Descriptor Guide

Release 3.13.3

Guido van Rossum and the Python development team

April 13, 2025

Python Software Foundation
Email: docs@python.org

<python at rcn dot com>

Contents

1 Primer 3
1.1 Simple example: A descriptor that returns aconstant 3
1.2 Dynamiclookups e e e e 3
1.3 Managed attributes L e e e e e e 4
1.4 Customized names.o e e e e 5
1.5 Closingthoughts e e e e e e 6

2 Complete Practical Example 6
2.1 Validatorclass 7
2.2 Custom validators e e e e e e e e 7
2.3 Practical application L. e e e 8

3 Technical Tutorial 9
31 ADSIIaCt e 9
3.2 Definition and introducCtion oL e e e e e e e e e e e e e e e 9
3.3 Descriptor protocol e 9
3.4 Overview of descriptor invoCation v v v v v s e e e e e e e 10
3.5 Invocationfromaninstance L . e e e e e e e e 10
3.6 Invocationfromaclass e 11
3.7 Invocation from Super e e e e 11
3.8 Summary of invocation logic Lo e e 11
3.9 Automatic name notification L Lol e e 11
3,10 ORMexample v o ot e e e e e e e e e e e e e e e e e e e 12

4 Pure Python Equivalents 13
4.1 Properties e e e e e e e 13
4.2 Functionsand methods L e 14
43 Kindsof methods L 16
44 Staticmethods e 16
45 Classmethods o o . o e e e e e e 17
4.6 Memberobjectsand __slots__ 18

Author
Raymond Hettinger
Contact

Contents

o Descriptor Guide

- Primer
» Simple example: A descriptor that returns a constant
« Dynamic lookups
» Managed attributes
* Customized names
* Closing thoughts

— Complete Practical Example
« Validator class
* Custom validators
« Practical application

— Technical Tutorial
» Abstract
* Definition and introduction
x Descriptor protocol
x Qverview of descriptor invocation
* Invocation from an instance
« Invocation from a class
* Invocation from super
x Summary of invocation logic
* Automatic name notification
* ORM example

— Pure Python Equivalents
» Properties
» Functions and methods
» Kinds of methods
* Static methods

x Class methods

x Member objects and __slots__

Descriptors let objects customize attribute lookup, storage, and deletion.
This guide has four major sections:

1) The “primer” gives a basic overview, moving gently from simple examples, adding one feature at a time. Start
here if you’re new to descriptors.

2) The second section shows a complete, practical descriptor example. If you already know the basics, start there.

3) The third section provides a more technical tutorial that goes into the detailed mechanics of how descriptors
work. Most people don’t need this level of detail.

4) The last section has pure Python equivalents for built-in descriptors that are written in C. Read this if you're
curious about how functions turn into bound methods or about the implementation of common tools like
classmethod (), staticmethod (), property (), and _ slots_ .

1 Primer

In this primer, we start with the most basic possible example and then we’ll add new capabilities one by one.

1.1 Simple example: A descriptor that returns a constant

The Ten class is a descriptor whose __get_ () method always returns the constant 10:

class Ten:
def _ get_ (self, obj, objtype=None) :
return 10

To use the descriptor, it must be stored as a class variable in another class:

class A:
x = 5 # Regular class attribute
y = Ten() # Descriptor instance

An interactive session shows the difference between normal attribute lookup and descriptor lookup:

>>> a = A() # Make an instance of class A
>>> a.x # Normal attribute lookup

5

>>> a.y # Descriptor lookup

10

In the a . x attribute lookup, the dot operator finds 'x ' : 5 in the class dictionary. In the a . y lookup, the dot operator
finds a descriptor instance, recognized by its __get__ method. Calling that method returns 10.

Note that the value 10 is not stored in either the class dictionary or the instance dictionary. Instead, the value 10 is
computed on demand.

This example shows how a simple descriptor works, but it isn’t very useful. For retrieving constants, normal attribute
lookup would be better.

In the next section, we'll create something more useful, a dynamic lookup.

1.2 Dynamic lookups

Interesting descriptors typically run computations instead of returning constants:

import os

class DirectorySize:

def _ get_ (self, obj, objtype=None) :
return len(os.listdir (obj.dirname))

class Directory:

size = DirectorySize() # Descriptor instance
def _ init_ (self, dirname):
self.dirname = dirname # Regular instance attribute

An interactive session shows that the lookup is dynamic — it computes different, updated answers each time:

>>> s = Directory('songs')

>>> = Directory('games')

>>> s.size # The songs directory has twenty files
20

>>> g.size # The games directory has three files

3

>>> os.remove ('games/chess') # Delete a game

>>> g.size # File count is automatically updated

2

Besides showing how descriptors can run computations, this example also reveals the purpose of the parameters to
__get__ (). The self parameter is size, an instance of DirectorySize. The obj parameter is either g or s, an instance of
Directory. 1t is the obj parameter that lets the __get__ () method learn the target directory. The objtype parameter
is the class Directory.

1.3 Managed attributes

A popular use for descriptors is managing access to instance data. The descriptor is assigned to a public attribute in
the class dictionary while the actual data is stored as a private attribute in the instance dictionary. The descriptor’s
__get__ () and __set__ () methods are triggered when the public attribute is accessed.

In the following example, age is the public attribute and _age is the private attribute. When the public attribute is
accessed, the descriptor logs the lookup or update:

import logging

logging.basicConfig(level=logging.INFO)

class LoggedAgeAccess:

def _ get_ (self, obj, objtype=None) :
value = obj._age
logging.info ('Accessing giving ', 'age', value)
return value

def _ set_ (self, obj, value):

logging.info ('Updating to ', 'age', value)
obj._age = value

class Person:

age = LoggedAgeAccess () # Descriptor instance

def _ _init__ (self, name, age):
self.name = name # Regular instance attribute
self.age = age # Calls __set__ ()

def birthday(self):
self.age += 1 # Calls both __get__ () and __set__ ()

J

An interactive session shows that all access to the managed attribute age is logged, but that the regular attribute name
is not logged:

>>> mary = Person('Mary M', 30) # The initial age update is logged
INFO:root:Updating 'age' to 30

>>> dave = Person('David D', 40)

INFO:root:Updating 'age' to 40

(continues on next page)

(continued from previous page)

>>> vars (mary) # The actual data is in a private attribute
{'name': 'Mary M', '_age': 30}

>>> vars (dave)

{'name': 'David D', '_age': 40}

>>> mary.age # Access the data and log the lookup
INFO:root:Accessing 'age' giving 30

30

>>> mary.birthday () # Updates are logged as well
INFO:root:Accessing 'age' giving 30

INFO:root:Updating 'age' to 31

>>> dave.name # Regular attribute lookup isn't logged
'David D'
>>> dave.age # Only the managed attribute is logged

INFO:root:Accessing 'age' giving 40
40

One major issue with this example is that the private name _age is hardwired in the LoggedAgeAccess class. That
means that each instance can only have one logged attribute and that its name is unchangeable. In the next example,
we'll fix that problem.

1.4 Customized names
When a class uses descriptors, it can inform each descriptor about which variable name was used.

In this example, the Person class has two descriptor instances, name and age. When the Person class is defined,
it makes a callback to __set_name__ () in LoggedAccess so that the field names can be recorded, giving each
descriptor its own public_name and private_name:

import logging

logging.basicConfig(level=logging.INFO)

class LoggedAccess:

def _ set_name__ (self, owner, name):
self.public_name = name

self.private_name = ' ' + name

def _ get_ (self, obj, objtype=None) :
value = getattr (obj, self.private_name)
logging.info ('Accessing ¢r giving %r', self.public_name, value)
return value

def _ set_ (self, obj, value):

logging.info ('Updating %r to %r', self.public_name, value)
setattr (obj, self.private_name, value)

class Person:

name = LoggedAccess () # First descriptor instance
age = LoggedAccess () # Second descriptor instance
def _ init__ (self, name, age):
self.name = name # Calls the first descriptor
self.age = age # Calls the second descriptor

(continues on next page)

(continued from previous page)

def birthday(self):
self.age += 1

An interactive session shows that the Person class has called __set_name__ () so that the field names would be
recorded. Here we call vars () to look up the descriptor without triggering it:

>>> vars (vars (Person) ['"name'])

{'public_name': 'name', 'private_name': '_name'}
>>> vars (vars (Person) ['age'])

{'public_name': 'age', 'private_name': '_age'}

The new class now logs access to both name and age:

>>> pete = Person('Peter P', 10)
INFO:root:Updating 'name' to 'Peter P'
INFO:root:Updating 'age' to 10

>>> kate = Person('Catherine C', 20)
INFO:root:Updating 'name' to 'Catherine C'
INFO:root:Updating 'age' to 20

The two Person instances contain only the private names:

>>> vars (pete)
{'_name': 'Peter P', '_age': 10}
>>> vars (kate)

{'_name': 'Catherine C', '_age': 20}

1.5 Closing thoughts
A descriptor is what we call any object that defines __get__ (), __set__ (),or __delete_ ().

Optionally, descriptors can have a __set_name__ () method. This is only used in cases where a descriptor needs to
know either the class where it was created or the name of class variable it was assigned to. (This method, if present,
is called even if the class is not a descriptor.)

Descriptors get invoked by the dot operator during attribute lookup. If a descriptor is accessed indirectly with
vars (some_class) [descriptor_name], the descriptor instance is returned without invoking it.

Descriptors only work when used as class variables. When put in instances, they have no effect.

The main motivation for descriptors is to provide a hook allowing objects stored in class variables to control what
happens during attribute lookup.

Traditionally, the calling class controls what happens during lookup. Descriptors invert that relationship and allow
the data being looked-up to have a say in the matter.

Descriptors are used throughout the language. It is how functions turn into bound methods. Common tools like
classmethod(),staticmethod(),property(),andfunctools.cached_property()areaﬂhnpknnmﬁed
as descriptors.

2 Complete Practical Example

In this example, we create a practical and powerful tool for locating notoriously hard to find data corruption bugs.

2.1 Validator class

A validator is a descriptor for managed attribute access. Prior to storing any data, it verifies that the new value meets
various type and range restrictions. If those restrictions aren’t met, it raises an exception to prevent data corruption
at its source.

This validator class is both an abstract base class and a managed attribute descriptor:

from abc import ABC, abstractmethod

class Validator (ABC) :

def _ set_name__ (self, owner, name):
self.private_name = '_' + name

def _ get_ (self, obj, objtype=None) :
return getattr (obj, self.private_name)

def _ set_ (self, obj, value):

self.validate (value)
setattr (obj, self.private_name, value)

@abstractmethod
def validate(self, wvalue):
pass

Custom validators need to inherit from validator and must supply a validate () method to test various restric-
tions as needed.

2.2 Custom validators
Here are three practical data validation utilities:
1) oneoOf verifies that a value is one of a restricted set of options.

2) Number verifies that a value is either an int or float. Optionally, it verifies that a value is between a given
minimum or maximum.

3) String verifies that a value is a str. Optionally, it validates a given minimum or maximum length. It can
validate a user-defined predicate as well.

class OneOf (Validator) :

def _ init__ (self, *options):
self.options = set (options)

def validate(self, wvalue):
if value not in self.options:
raise ValueError(
f'Expected {value to be one of {self.options

class Number (Validator) :

def _ init_ (self, minvalue=None, maxvalue=None) :
self.minvalue = minvalue
self.maxvalue = maxvalue

def validate(self, wvalue):
if not isinstance(value, (int, float)):
(continues on next page)

https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)

(continued from previous page)
raise TypeError (f'Expected {value!/r} to be an int or float')
if self.minvalue is not None and value < self.minvalue:
raise ValueError (
f'Expected {value!r} to be at least {self.minvalue!/r}’'
)
if self.maxvalue is not None and value > self.maxvalue:
raise ValueError(
f'Expected {value!/r} to be no more than {self.maxvalue!/r}'

class String(Validator):

def _ init__ (self, minsize=None, maxsize=None, predicate=None) :
self.minsize = minsize
self.maxsize = maxsize
self.predicate = predicate

def validate(self, wvalue):
if not isinstance(value, str):
raise TypeError (f'Expected {value!/r} to be an str')
if self.minsize is not None and len(value) < self.minsize:
raise ValueError (
f'Expected {value!/r} to be no smaller than {self.minsize!/r}’'
)
if self.maxsize is not None and len(value) > self.maxsize:
raise ValueError (
f'Expected {value!r} to be no bigger than {self.maxsize!r}'
)
if self.predicate is not None and not self.predicate(value):
raise ValueError (
f'Expected {self.predicate} to be true for {value!/r}'

2.3 Practical application

Here’s how the data validators can be used in a real class:

class Component:

name String(minsize=3, maxsize=10, predicate=str.isupper)
kind = OneOf ('wood', 'metal', 'plastic')

quantity = Number (minvalue=0)

def _ init__ (self, name, kind, quantity):
self.name = name
self.kind = kind
self.quantity = quantity

The descriptors prevent invalid instances from being created:

>>> Component ('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase
Traceback (most recent call last):

ValueError: Expected <method 'isupper' of 'str' objects> to be true for 'Widget'

>>> Component ('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled

(continues on next page)

(continued from previous page)

Traceback (most recent call last):
ValueError: Expected 'metle' to be one of {'metal', 'plastic', 'wood'}

>>> Component ('WIDGET', 'metal', -5) # Blocked: -5 1is negative
Traceback (most recent call last):

ValueError: Expected -5 to be at least 0

>>> Component ('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number
Traceback (most recent call last):

TypeError: Expected 'V' to be an int or float

>>> ¢ = Component ('WIDGET', 'metal', 5) # Allowed: The inputs are valid

3 Technical Tutorial

What follows is a more technical tutorial for the mechanics and details of how descriptors work.

3.1 Abstract

Defines descriptors, summarizes the protocol, and shows how descriptors are called. Provides an example showing
how object relational mappings work.

Learning about descriptors not only provides access to a larger toolset, it creates a deeper understanding of how
Python works.

3.2 Definition and introduction

In general, a descriptor is an attribute value that has one of the methods in the descriptor protocol. Those methods
are__get_ (), __set_ (),and__delete__ (). If any of those methods are defined for an attribute, it is said to
be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a.x hasalookup chain startingwitha.__dict_ ['x'],thentype (a).__dict__['x'],and continuing through
the method resolution order of type (a) . If the looked-up value is an object defining one of the descriptor methods,
then Python may override the default behavior and invoke the descriptor method instead. Where this occurs in the
precedence chain depends on which descriptor methods were defined.

Descriptors are a powerful, general purpose protocol. They are the mechanism behind properties, methods, static
methods, class methods, and super (). They are used throughout Python itself. Descriptors simplify the underlying
C code and offer a flexible set of new tools for everyday Python programs.

3.3 Descriptor protocol
descr.__get_ (self, obj, type=None)
descr.__set__ (self, obj, value)
descr.__delete__ (self, obj)

That is all there is to it. Define any of these methods and an object is considered a descriptor and can override default
behavior upon being looked up as an attribute.

If an object defines __set__ () or __delete__ (), itis considered a data descriptor. Descriptors that only define
__get__ () are called non-data descriptors (they are often used for methods but other uses are possible).

Data and non-data descriptors differ in how overrides are calculated with respect to entries in an instance’s dictionary.
If an instance’s dictionary has an entry with the same name as a data descriptor, the data descriptor takes precedence.

If an instance’s dictionary has an entry with the same name as a non-data descriptor, the dictionary entry takes
precedence.

To make a read-only data descriptor, define both __get_ () and _ _set_ () with the _ set__ () raising an
AttributeError when called. Defining the __set__ () method with an exception raising placeholder is enough
to make it a data descriptor.

3.4 Overview of descriptor invocation
A descriptor can be called directly with desc.__get__ (obj) ordesc.__get__ (None, cls).
But it is more common for a descriptor to be invoked automatically from attribute access.

The expression ob . x looks up the attribute x in the chain of namespaces for obj. If the search finds a descriptor
outside of the instance __dict__,its__get__ () method is invoked according to the precedence rules listed below.

The details of invocation depend on whether ob is an object, class, or instance of super.

3.5 Invocation from an instance

Instance lookup scans through a chain of namespaces giving data descriptors the highest priority, followed by instance
variables, then non-data descriptors, then class variables, and lastly _ getattr__ () if it is provided.

If a descriptor is found for a. x, then it is invoked with: desc.__get__ (a, type(a)).

The logic for a dotted lookup is in object._getattribute__ (). Here is a pure Python equivalent:

def find_name_in_mro(cls, name, default):
"Emulate _PyType_Lookup () in Objects/typeobject.c"
for base in cls. mro
if name in vars (base):
return vars (base) [name]
return default

def object_getattribute (obj, name) :
"Emulate PyObject_GenericGetAttr () in Objects/object.c"
null = object ()
objtype = type (ob7j)

cls_var = find_name_in_mro (objtype, name, null)
descr_get = getattr(type(cls_var), '__get_ ', null)
if descr_get is not null:
if (hasattr(type(cls_var), '__set_ ")
or hasattr(type(cls_var), '_ _delete_ '")):
return descr_get (cls_var, obj, objtype) # data descriptor
if hasattr(obj, '__dict__ ') and name in vars (obj):
return vars (obj) [name] # instance variable

if descr_get is not null:

return descr_get (cls_var, obj, objtype) # non-data descriptor
if cls_var is not null:

return cls_var # class variable

raise AttributeError (name)
J

Note, there is no _ getattr_ () hook in the _ getattribute__ () code. That is why calling
__getattribute__ () directly or with super () .__getattribute__ will bypass __getattr__ () entirely.

Instead, it is the dot operator and the getattr () function that are responsible for invoking _getattr__ () when-
ever __getattribute__ () raises an AttributeError. Their logic is encapsulated in a helper function:

def getattr_hook (obj, name):
"Emulate slot_tp_getattr_hook () in Objects/typeobject.c"
try:
(continues on next page)

10

(continued from previous page)

return obj.__getattribute__ (name)
except AttributeError:
if not hasattr(type(obj), '_ _getattr_ '):
raise
return type (obj).__getattr__ (obj, name) # __getattr

3.6 Invocation from a class

The logic for a dotted lookup such as A.x is in type._ getattribute__ (). The steps are similar to those
for object._ _getattribute__ () but the instance dictionary lookup is replaced by a search through the class’s
method resolution order.

If a descriptor is found, it is invoked with desc.__get__ (None, A).

The full C implementation can be found in type_getattro() and _PyType_ Lookup () in Objects/typeobject.c.

3.7 Invocation from super

The logic for super’s dotted lookup is in the __getattribute__ () method for object returned by super ().
A dotted lookup such as super (A, obj) .msearches obj.__class__._ mro__ for the base class B immediately
following A and thenreturns B.__dict__ ['m'].__get__ (obj, A).If nota descriptor, mis returned unchanged.

The full C implementation can be found in super_getattro () in Objects/typeobject.c. A pure Python equivalent
can be found in Guido’s Tutorial.

3.8 Summary of invocation logic

The mechanism for descriptors is embedded in the _ getattribute_ () methods for object, type, and
super ().

The important points to remember are:
« Descriptors are invoked by the _getattribute__ () method.

« Classes inherit this machinery from object, type, or super ().

e Overriding _ _getattribute__ () prevents automatic descriptor calls because all the descriptor logic is in
that method.
e object.__getattribute_ () and type._ getattribute__ () make different calls to _ get_ ().

The first includes the instance and may include the class. The second puts in None for the instance and always
includes the class.

 Data descriptors always override instance dictionaries.

« Non-data descriptors may be overridden by instance dictionaries.

3.9 Automatic name notification

Sometimes it is desirable for a descriptor to know what class variable name it was assigned to. When a new class is
created, the type metaclass scans the dictionary of the new class. If any of the entries are descriptors and if they
define __set_name__ (), that method is called with two arguments. The owner is the class where the descriptor is
used, and the name is the class variable the descriptor was assigned to.

The implementation details are in t ype_new () and set_names () in Objects/typeobject.c.

Since the update logicisin type.__new__ (), notifications only take place at the time of class creation. If descriptors
are added to the class afterwards, _ set_name__ () will need to be called manually.

11

https://github.com/python/cpython/tree/3.13/Objects/typeobject.c
https://github.com/python/cpython/tree/3.13/Objects/typeobject.c
https://www.python.org/download/releases/2.2.3/descrintro/#cooperation
https://github.com/python/cpython/tree/3.13/Objects/typeobject.c

3.10 ORM example

The following code is a simplified skeleton showing how data descriptors could be used to implement an object
relational mapping.

The essential idea is that the data is stored in an external database. The Python instances only hold keys to the
database’s tables. Descriptors take care of lookups or updates:

class Field:

def _ set_name__ (self, owner, name):
self.fetch = f'SELECT {name} FROM {owner.table} WHERE {owner.key}/=7?;"
self.store = f'UPDATE {owner.table} SET {name }/=? WHERE {owner.key}/=7?;"

def _ get_ (self, obj, objtype=None) :
return conn.execute (self.fetch, [obj.key]).fetchone() [0]

def _ _set_ (self, obj, value):
conn.execute (self.store, [value, obj.keyl])
conn.commit ()

We can use the Field class to define models that describe the schema for each table in a database:

class Movie:
table = 'Movies' # Table name
key = 'title' # Primary key
director = Field()
year = Field()

def _ init__ (self, key):
self.key = key

class Song:
table = 'Music'
key = 'title'
artist = Field()
year = Field()
genre = Field()

def _ init__ (self, key):
self.key = key

To use the models, first connect to the database:

>>> import sqglite3
>>> conn = sglite3.connect ('entertainment.db')

An interactive session shows how data is retrieved from the database and how it can be updated:

>>> Movie ('Star Wars') .director

'George Lucas'

>>> jaws = Movie ('Jaws')

>>> f'Released in {jaws.year} by {jaws.director}'
'Released in 1975 by Steven Spielberg'

>>> Song ('Country Roads') .artist
'John Denver'

>>> Movie ('Star Wars') .director = 'J.J. Abrams'

(continues on next page)

12

https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Database_model

>>> Movie ('Star Wars') .director
'd.J. Abrams'

(continued from previous page)

4 Pure Python Equivalents

The descriptor protocol is simple and offers exciting possibilities. Several use cases are so common that they have
been prepackaged into built-in tools. Properties, bound methods, static methods, class methods, and __slots__ are

all based on the descriptor protocol.

4.1 Properties

Calling property () is a succinct way of building a data descriptor that triggers a function call upon access to an

attribute. Its signature is:

[property(fgetzNone, fset=None, fdel=None, doc=None) -> property }

The documentation shows a typical use to define a managed attribute x:

class C:
def getx(self): return self.
def setx(self, wvalue): self.
def delx(self): del self._ x
x = property(getx, setx, delx,

_ X
X

= value

"I'm the

x' property.")

To see how property () is implemented in terms of the descriptor protocol, here is a pure Python equivalent that

implements most of the core functionality:

class Property:

def _ init__ (self, fget=None,
self.fget = fget
self.fset = fset
self.fdel = fdel

doc = fget. doc

self. doc__ = doc
def _ set_name__ (self, owner,
self. name = name

if obj is None:
return self
if self.fget is None:
raise AttributeError
return self.fget (obj)
def _ set_ (self, obj, value):
if self.fset is None:
raise AttributeError
self.fset (obj, value)

def _ delete_ (self, obj):
if self.fdel is None:
raise AttributeError

fset=None,

if doc is None and fget is not None:

name) :

def _ get_ (self, obj, objtype=None) :

13

"Emulate PyProperty_Type () in Objects/descrobject.c"

fdel=None, doc=None) :

(continues on next page)

(continued from previous page)

self.fdel (obj)

def getter(self, fget):
return type (self) (fget, self.fset, self.fdel, self. doc_)

def setter(self, fset):
return type (self) (self.fget, fset, self.fdel, self. doc_)

def deleter(self, fdel):
return type (self) (self.fget, self.fset, fdel, self. doc_)

J

The property () builtin helps whenever a user interface has granted attribute access and then subsequent changes

require the intervention of a method.

For instance, a spreadsheet class may grant access to a cell value through Cell ('b10") .value. Subsequent im-
provements to the program require the cell to be recalculated on every access; however, the programmer does not
want to affect existing client code accessing the attribute directly. The solution is to wrap access to the value attribute

in a property data descriptor:

class Cell:

@property

def value(self):
"Recalculate the cell before returning value"
self.recalc()
return self._value

Either the built-in property () or our Property () equivalent would work in this example.

4.2 Functions and methods

Python’s object oriented features are built upon a function based environment. Using non-data descriptors, the two

are merged seamlessly.

Functions stored in class dictionaries get turned into methods when invoked. Methods only differ from regular func-
tions in that the object instance is prepended to the other arguments. By convention, the instance is called self but

could be called rhis or any other variable name.

Methods can be created manually with types .MethodType which is roughly equivalent to:

class MethodType:
"Emulate PyMethod_Type in Objects/classobject.c"

def _ init__ (self, func, obj):

self. func = func
self. self = obj

def _ call (self, *args, **kwargs):
func = self. func

obj = self. self
return func(obj, *args, **kwargs)

def _ getattribute__ (self, name):
"Emulate method_getset () in Objects/classobject.c"

if name == '__doc_ ':
return self. func_ . doc_
return object.__getattribute__ (self, name)

14

(continues on next page)

(continued from previous page)

def _ getattr_ (self, name):
"Emulate method_getattro() in Objects/classobject.c"
return getattr(self. func_, name)

def get__ (self, obj, objtype=None) :

"Emulate method_descr_get () in Objects/classobject.c"
return self

To support automatic creation of methods, functions include the _ get__ () method for binding methods during
attribute access. This means that functions are non-data descriptors that return bound methods during dotted lookup
from an instance. Here’s how it works:

class Function:

def _ get_ (self, obj, objtype=None) :
"Simulate func_descr_get () in Objects/funcobject.c"
if obj is None:
return self
return MethodType (self, obj)

Running the following class in the interpreter shows how the function descriptor works in practice:

class D:
def f(self):
return self

class D2:
pass

The function has a qualified name attribute to support introspection:

>>> D.f.__qualname_
'D.f'

Accessing the function through the class dictionary does notinvoke __get
function object:

(). Instead, it just returns the underlying

>>> D._ dict_ ['f']
<function D.f at 0x00C45070>

Dotted access from a class calls __get__ () which just returns the underlying function unchanged:

>>> D.f
<function D.f at 0x00C45070>

The interesting behavior occurs during dotted access from an instance. The dotted lookup calls __get__ () which
returns a bound method object:

>>> d = D()
>>> d. f
<bound method D.f of <__main__.D object at 0x00B18C90>>

Internally, the bound method stores the underlying function and the bound instance:

>>> d.f._ func_
<function D.f at 0x00C45070>

(continues on next page)

15

(continued from previous page)

>>> d.f._ self
<__main__.D object at 0x00B18C90>

If you have ever wondered where self comes from in regular methods or where cls comes from in class methods, this
is it!

4.3 Kinds of methods

Non-data descriptors provide a simple mechanism for variations on the usual patterns of binding functions into meth-
ods.

To recap, functions have a __get__ () method so that they can be converted to a method when accessed as attributes.
The non-data descriptor transforms an obj. f (*args) call into f (obj, *args). Calling cls.f (*args) be-
comes f (*args).

This chart summarizes the binding and its two most useful variants:

Transformation Called from an object Called from a class

function f(obj, *args) f(*args)
staticmethod f(*args) f(*args)
classmethod f(type(obj), *args) f(cls, *args)

4.4 Static methods

Static methods return the underlying function without changes. Calling either c. £ or C. f is the equivalent of a direct
lookup into object._ getattribute_ (c, "f") or object._ getattribute_ (C, "f"). As a result,
the function becomes identically accessible from either an object or a class.

Good candidates for static methods are methods that do not reference the self variable.

For instance, a statistics package may include a container class for experimental data. The class provides normal
methods for computing the average, mean, median, and other descriptive statistics that depend on the data. However,
there may be useful functions which are conceptually related but do not depend on the data. For instance, erf (x) is
handy conversion routine that comes up in statistical work but does not directly depend on a particular dataset. It can
be called either from an object or the class: s.erf (1.5) —--> 0.9332 or Sample.erf (1.5) —--> 0.9332.

Since static methods return the underlying function with no changes, the example calls are unexciting:

class E:
@staticmethod
def f(x):
return x * 10

>>> E.f (3)
30

>>> E().£(3)
30

Using the non-data descriptor protocol, a pure Python version of staticmethod () would look like this:

import functools

class StaticMethod:
"Emulate PyStaticMethod_Type () in Objects/funcobject.c"

def _ init_ (self, f):
(continues on next page)

16

(continued from previous page)
self.f = £
functools.update_wrapper (self, f)

def _ get_ (self, obj, objtype=None) :
return self.f

def _ call (self, *args, **kwds):
return self.f (*args, **kwds)

The functools.update_wrapper () call adds a __ wrapped__ attribute that refers to the underlying function.
Also it carries forward the attributes necessary to make the wrapper look like the wrapped function: _ name__,
_ _qualname_ ,_ doc_ ,and _ annotations_ .

4.5 Class methods

Unlike static methods, class methods prepend the class reference to the argument list before calling the function. This
format is the same for whether the caller is an object or a class:

class F:
@classmethod
def f(cls, x):
return cls._ name_ , X

>>> F.f(3)
('e', 3)

>>> F().£(3)
('"F', 3)

J

This behavior is useful whenever the method only needs to have a class reference and does not rely on data stored in
a specific instance. One use for class methods is to create alternate class constructors. For example, the classmethod
dict.fromkeys () creates a new dictionary from a list of keys. The pure Python equivalent is:

class Dict (dict) :

@classmethod

def fromkeys(cls, iterable, value=None) :
"Emulate dict_fromkeys () in Objects/dictobject.c"
d = cls()
for key in iterable:

dlkey] = value

return d

Now a new dictionary of unique keys can be constructed like this:

>>> d = Dict.fromkeys ('abracadabra')
>>> type(d) is Dict

True

>>> d

{'a': None, 'b': None, 'r': None, 'c': None, 'd': None}

Using the non-data descriptor protocol, a pure Python version of classmethod () would look like this:

import functools

class ClassMethod:
"Emulate PyClassMethod_Type () in Objects/funcobject.c"

def _ init_ (self, f):

(continues on next page)

17

(continued from previous page)

self.f = £
functools.update_wrapper (self, f)

def _ get_ (self, obj, cls=None):
if cls is None:
cls = type (obj)
return MethodType (self.f, cls)

The functools.update_wrapper () call in ClassMethod adds a __ wrapped___ attribute that refers to the
underlying function. Also it carries forward the attributes necessary to make the wrapper look like the wrapped
function: _ _name_ , _ qualname_ ,_ doc_ ,and _ annotations_ .

4.6 Member objects and __slots__

When a class defines __slots__, it replaces instance dictionaries with a fixed-length array of slot values. From a
user point of view that has several effects:

1. Provides immediate detection of bugs due to misspelled attribute assignments. Only attribute names specified in
__slots__ are allowed:

class Vehicle:
slots = ('id_number', 'make', 'model')

>>> auto = Vehicle ()
>>> guto.id_nubmer = 'VYE483814LOEX'
Traceback (most recent call last):

AttributeError: 'Vehicle' object has no attribute 'id_nubmer'

2. Helps create immutable objects where descriptors manage access to private attributes stored in __slots_ :

class Immutable:

__slots__ = ('_dept', '_name') # Replace the instance dictionary
def _ init_ (self, dept, name):
self._dept = dept # Store to private attribute
self. _name = name # Store to private attribute
@property # Read-only descriptor

def dept (self):
return self._dept

@property
def name (self): # Read-only descriptor
return self._name

>>> mark = Immutable ('Botany', 'Mark Watney')
>>> mark.dept

'Botany'

>>> mark.dept = 'Space Pirate'

Traceback (most recent call last):

AttributeError: property 'dept' of 'Immutable' object has no setter
>>> mark.location = 'Mars'
Traceback (most recent call last):

(continues on next page)

18

(continued from previous page)

AttributeError: 'Immutable' object has no attribute 'location'

3. Saves memory. On a 64-bit Linux build, an instance with two attributes takes 48 bytes with __slots__ and 152
bytes without. This flyweight design pattern likely only matters when a large number of instances are going to be
created.

4. Improves speed. Reading instance variables is 35% faster with __slots__ (as measured with Python 3.10 on an
Apple M1 processor).

5. Blocks tools like functools.cached_property () which require an instance dictionary to function correctly:

from functools import cached_property

class CP:
__slots__ = () # Eliminates the instance dict
@cached_property # Requires an instance dict

def pi(self):
return 4 * sum((-1.0)**n / (2.0*n + 1.0)
for n in reversed(range (100_000)))

>>> CP () .pi
Traceback (most recent call last):

TypeError: No '__dict__ ' attribute on 'CP' instance to cache 'pi' property.

It is not possible to create an exact drop-in pure Python version of __slots__ because it requires direct access to
C structures and control over object memory allocation. However, we can build a mostly faithful simulation where
the actual C structure for slots is emulated by a private _slotvalues list. Reads and writes to that private structure
are managed by member descriptors:

null = object ()
class Member:

def _ init_ (self, name, clsname, offset):
'Emulate PyMemberDef in Include/structmember.h'
Also see descr_new() in Objects/descrobject.c
self.name = name
self.clsname = clsname
self.offset = offset

def _ get_ (self, obj, objtype=None) :
'Emulate member_get () in Objects/descrobject.c'
Also see PyMember_ GetOne () in Python/structmember.c
if obj is None:
return self
value = obj._slotvalues[self.offset]
if value is null:
raise AttributeError (self.name)
return value

def _ set_ (self, obj, value):
'Emulate member_set () in Objects/descrobject.c'
obj._slotvalues|[self.offset] = value

(continues on next page)

19

https://en.wikipedia.org/wiki/Flyweight_pattern

(continued from previous page)

def _ delete_ (self, obj):
'Emulate member_delete() in Objects/descrobject.c'
value = obj._slotvalues[self.offset]
if value is null:
raise AttributeError (self.name)
obj._slotvalues[self.offset] = null

def repr__ (self):

'Emulate member_repr () in Objects/descrobject.c'
return f'<Member {self.name!/r} of {self.clsname!/r}>"
J
The type._ new__ () method takes care of adding member objects to class variables:

class Type (type) :
'Simulate how the type metaclass adds member objects for slots'

def _ new__ (mcls, clsname, bases, mapping, **kwargs):
'Emulate type_new () in Objects/typeobject.c'
type_new() calls PyTypeReady () which calls add_methods ()
slot_names = mapping.get ('slot_names', [])
for offset, name in enumerate (slot_names) :
mapping[name] = Member (name, clsname, offset)

return type._ _new__ (mcls, clsname, bases, mapping, **kwargs)

The object.__new__ () method takes care of creating instances that have slots instead of an instance dictionary.
Here is a rough simulation in pure Python:

class Object:
'Simulate how object._ _new__ () allocates memory for __ slots_ '

def _ new__ (cls, *args, **kwargs):
'Emulate object_new () in Objects/typeobject.c'

inst = super().__new__ (cls)

if hasattr(cls, 'slot_names'):
empty_slots = [null] * len(cls.slot_names)
object.__setattr__ (inst, '_slotvalues', empty_slots)

return inst

def _ setattr_ (self, name, value):
'Emulate _PyObject_GenericSetAttrWithDict () Objects/object.c'
cls = type(self)
if hasattr(cls, 'slot_names') and name not in cls.slot_names:
raise AttributeError (
f'{cls._ name__!r} object has no attribute {name!/r}’'
)

super () .__setattr__ (name, value)

def _ delattr_ (self, name):
'Emulate _PyObject_GenericSetAttrWithDict () Objects/object.c'
cls = type(self)
if hasattr(cls, 'slot_names') and name not in cls.slot_names:
raise AttributeError (
f'{cls._ name__ !r} object has no attribute {name!/r}'
)

super () ._ _delattr__ (name)

To use the simulation in a real class, just inherit from Object and set the metaclass to Type:

20

class H(Object, metaclass=Type) :
'Instance variables stored in slots'

slot_names = ['x', 'y']
def _ init_ (self, x, y):

self.x = x
self.y =y

At this point, the metaclass has loaded member objects for x and y:

>>> from pprint import pp
>>> pp (dict (vars (H)))

{'__module_ ': '__main__ "',
' doc_ ': 'Instance variables stored in slots',
'slot_names': ['x', 'yv'l],
'_init_ '": <function H._ init__ at 0x7fb5d302f£9d0>,
'x': <Member 'x' of 'H'>,

'y': <Member 'y' of 'H'>}

When instances are created, they have a slot_values list where the attributes are stored:

>>> h = H(10, 20)
>>> vars (h)

{'_slotvalues': [10, 20]}
>>> h.x = 55

>>> vars (h)
{'_slotvalues': [55, 20]}

Misspelled or unassigned attributes will raise an exception:

>>> h.xz

Traceback (most recent call last):

AttributeError: 'H' object has no attribute 'xz'

21

	Primer
	Simple example: A descriptor that returns a constant
	Dynamic lookups
	Managed attributes
	Customized names
	Closing thoughts

	Complete Practical Example
	Validator class
	Custom validators
	Practical application

	Technical Tutorial
	Abstract
	Definition and introduction
	Descriptor protocol
	Overview of descriptor invocation
	Invocation from an instance
	Invocation from a class
	Invocation from super
	Summary of invocation logic
	Automatic name notification
	ORM example

	Pure Python Equivalents
	Properties
	Functions and methods
	Kinds of methods
	Static methods
	Class methods
	Member objects and __slots__

