=P

2.1
2.2
2.3
2.4
2.5

2.6

AR A
O N O Ut =W N =

ot

What’s New in Python

DJ—2X 3.13.3

A. M. Kuchling

4 8 23, 2025
Summary -- Release Highlights 4
New Features 6
A better interactive interpreter 6
Improved error messages oL oL e e e e e e e 7
Free-threaded CPython o . e 8
An experimental just-in-time (JIT) compilero oo L 9
Defined mutation semantics for locals() o o 10
Support for mobile platforms 11
Other Language Changes 11
New Modules 13
Improved Modules 13
ATEPATSE ¢ v v v e 13
2 13
aSt . s 13
ASYIICIO &« v v v v e e e e e e e e e e e e e 14
baseb4d e e e e e 14
compileall L e 15
concurrent.futures oL Lo 15
CcONfigPAarsero e e 15
COPY v v v e e e e e e e e e e e e e e e e e 15
COYDES o o o o e 15
dbm . .o e e e 16
dis . L e 16
doctest e e e 16
email . . Lo e 16
ENUIL .« o v v v v v e 17

7.1
7.2
7.3
7.4

glob e 17
importlib . . . Lo e 17
10 17
ipaddress. oL e e e e e e e e 18
itertools . . .o L e 18
marshalo 18
math e 18
mimetypes L e 18
IMINAD « v v v e 18
multiprocessing L e 19
OS v v e e e e e e e e 19
os.path . . o L e 19
pathlib e e 20
PAb L e e 20
QUEUE . v v v v v e e e e e e e e e e e e e e e e e e 20
Tandoml oL e e e e e e e e e e e e e e e 21
TE o v v e e e e e e e e e e e e e e e e 21
shutil © . o e 21
SIEE . o o e e e 21
sqlited . . . o e 21
SSl L e e 21
statistics L e e e e e e 22
SUDPIOCESS . . v v v v o e e e e e e e e e e e e e e e e 22
SYS v e e e e e e e e e e e e e e e 22
tempfile e e 22
tIMe . . e e e 22
tkinter L o e e e e 23
traceback . ..o L e 23
TYDPES - v o o e e e e e e 24
TYDING .« o o o o e e e e e e e e 24
unicodedata L e 24
VEIIV o v v v vt e 24
WATITHIES . 0 v v v v v e 24
xml ..o e e 24
ZIDIMPOTt . . . o o e e e e e 25
Optimizations 25
Removed Modules And APlIs 25
PEP 594: Remove ”dead batteries” from the standard library 25
2003 . e e e e e e 27
builtins o e e e e 27
configparser oL e e e e 28

7.5 importlib.metadata Lo 28
7.6 locale. L e e e 28
T2 0opcode . . oL e e 28
T.8 OPEPATSE L e e e e e e e 28
7.9 pathlib . . . L e 28
0 O 29
711 tkinter.tix L e e e 29
712 turtle . . .o L e 29
713 typINg . . . o e e e 29
714 unittest ... Lo e e e 29
715 urllib . .o o e 30
T7.16 webbrowser e e e e e e 30
8 New Deprecations 30
8.1 Pending Removal in Python 3.14 L 33
8.2 Pending Removal in Python 3.15 L oo 35
8.3 Pending removal in Python 3.16 L L 36
8.4 Pending Removal in Future Versions 37
9 CPython Bytecode Changes 40
10 C API Changes 40
10.1 New Features e 40
10.2 Changed C APIs e 44
10.3 Limited C API Changes o o i ittt e e 45
104 Removed C APIs 45
10.5 Deprecated C APIs o e 48
11 Build Changes 51
12 Porting to Python 3.13 52
12.1 Changes in the Python APT 52
12.2 Changes in the C APL 53
13 Regression Test Changes 55
14 Notable changes in 3.13.1 55
T4 SYS o o o e e e e e 55
5| 56
Editors

Adam Turner and Thomas Wouters

This article explains the new features in Python 3.13, compared to 3.12. Python 3.13 was released on

October 7, 2024. For full details, see the changelog.

& BE

PEP 719 -- Python 3.13 Release Schedule

1 Summary -- Release Highlights

Python 3.13 is the latest stable release of the Python programming language, with a mix of changes to the
language, the implementation and the standard library. The biggest changes include a new interactive
interpreter, experimental support for running in a free-threaded mode (PEP 703), and a Just-In-Time
compiler (PEP 744).

Error messages continue to improve, with tracebacks now highlighted in color by default. The locals()
builtin now has defined semantics for changing the returned mapping, and type parameters now support

default values.

The library changes contain removal of deprecated APIs and modules, as well as the usual improvements
in user-friendliness and correctness. Several legacy standard library modules have now been removed
following their deprecation in Python 3.11 (PEP 594).

This article doesn’t attempt to provide a complete specification of all new features, but instead gives
a convenient overview. For full details refer to the documentation, such as the Library Reference and
Language Reference. To understand the complete implementation and design rationale for a change,
refer to the PEP for a particular new feature; but note that PEPs usually are not kept up-to-date once a
feature has been fully implemented. See Porting to Python 3.13 for guidance on upgrading from earlier

versions of Python.

Interpreter improvements:
e A greatly improved interactive interpreter and improved error messages.

e PEP 667: The locals() builtin now has defined semantics when mutating the returned mapping.
Python debuggers and similar tools may now more reliably update local variables in optimized

scopes even during concurrent code execution.

e PEP 703: CPython 3.13 has experimental support for running with the global interpreter lock
disabled. See Free-threaded CPython for more details.

o« PEP 744: A basic JIT compiler was added. It is currently disabled by default (though we may
turn it on later). Performance improvements are modest -- we expect to improve this over the

next few releases.

e Color support in the new interactive interpreter, as well as in tracebacks and doctest output. This

can be disabled through the PYTHON_COLORS and NO_COLOR environment variables.

Python data model improvements:

https://peps.python.org/pep-0719/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0744/
https://peps.python.org/pep-0594/
https://peps.python.org/pep-0667/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0744/
https://no-color.org/

e __static_attributes__ stores the names of attributes accessed through self.X in any function

in a class body.
e __firstlineno__ records the first line number of a class definition.
Significant improvements in the standard library:

e Add a new PythonFinalizationError exception, raised when an operation is blocked during

finalization.

e The argparse module now supports deprecating command-line options, positional arguments, and

subcommands.

e The new functions base64.z85encode () and base64.z85decode () support encoding and decod-

ing Z85 data.

e The copy module now has a copy.replace() function, with support for many builtin types and

any class defining the __replace__() method.
e The new dbm.sqlite3 module is now the default dbm backend.

e The os module has a suite of new functions for working with Linux’s timer notification file de-

scriptors.
e The random module now has a command-line interface.
Security improvements:

e ssl.create_default_context() sets ssl.VERIFY_X509_PARTIAL_CHAIN and ssl.
VERIFY_X509_STRICT as default flags.

C API improvements:

e The Py_mod_gil slot is now used to indicate that an extension module supports running with the
GIL disabled.

e The PyTime C API has been added, providing access to system clocks.

e PyMutex is a new lightweight mutex that occupies a single byte.

e There is a new suite of functions for generating PEP 669 monitoring events in the C API.
New typing features:

o« PEP 696: Type parameters (typing.TypeVar, typing.ParamSpec, and typing.TypeVarTuple)

now support defaults.

e PEP 702: The new warnings.deprecated() decorator adds support for marking deprecations

in the type system and at runtime.

« PEP 705: typing.ReadOnly can be used to mark an item of a typing.TypedDict as read-only
for type checkers.

https://rfc.zeromq.org/spec/32/
https://peps.python.org/pep-0669/
https://peps.python.org/pep-0696/
https://peps.python.org/pep-0702/
https://peps.python.org/pep-0705/

o PEP 742: typing.Typels provides more intuitive type narrowing behavior, as an alternative to

typing.TypeGuard.
Platform support:
o« PEP 730: Apple’s iOS is now an officially supported platform, at tier 3.
e PEP 738: Android is now an officially supported platform, at tier 3.
e wasm32-wasi is now supported as a tier 2 platform.
e wasm32-emscripten is no longer an officially supported platform.
Important removals:

e PEP 59/: The remaining 19 ”dead batteries” (legacy stdlib modules) have been removed from
the standard library: aifc, audioop, cgi, cgitb, chunk, crypt, imghdr, mailcap, msilib, nis,

nntplib, ossaudiodev, pipes, sndhdr, spwd, sunau, telnetlib, uu and xdrlib.
e Remove the 2to3 tool and 1ib2to3 module (deprecated in Python 3.11).
o Remove the tkinter.tix module (deprecated in Python 3.6).
o Remove the locale.resetlocale() function.
e Remove the typing.io and typing.re namespaces.
e Remove chained classmethod descriptors.
Release schedule changes:

PEP 602 (”Annual Release Cycle for Python”) has been updated to extend the full support ("bugfix’)

period for new releases to two years. This updated policy means that:

e Python 3.9--3.12 have one and a half years of full support, followed by three and a half years of

security fixes.

e Python 3.13 and later have two years of full support, followed by three years of security fixes.

2 New Features

2.1 A better interactive interpreter

Python now uses a new interactive shell by default, based on code from the PyPy project. When the

user starts the REPL from an interactive terminal, the following new features are now supported:
e Multiline editing with history preservation.

e Direct support for REPL-specific commands like help, exit, and quit, without the need to call

them as functions.

e Prompts and tracebacks with color enabled by default.

Interactive help browsing using F1 with a separate command history.

6

https://peps.python.org/pep-0742/
https://peps.python.org/pep-0730/
https://peps.python.org/pep-0011/#tier-3
https://peps.python.org/pep-0738/
https://peps.python.org/pep-0011/#tier-3
https://peps.python.org/pep-0011/#tier-2
https://peps.python.org/pep-0602/
https://pypy.org/

o History browsing using F2 that skips output as well as the »> and ... prompts.

o "Paste mode” with F3 that makes pasting larger blocks of code easier (press F3 again to return to

the regular prompt).

To disable the new interactive shell, set the PYTHON_BASIC_REPL environment variable. For more on

interactive mode, see tut-interac.

(Contributed by Pablo Galindo Salgado, Lukasz Langa, and Lysandros Nikolaou in gh-111201 based on
code from the PyPy project. Windows support contributed by Dino Viehland and Anthony Shaw.)

2.2 Improved error messages

o The interpreter now uses color by default when displaying tracebacks in the terminal. This fea-
ture can be controlled via the new PYTHON_COLORS environment variable as well as the canonical
NO_COLOR and FORCE_COLOR environment variables. (Contributed by Pablo Galindo Salgado in
gh-112730.)

e A common mistake is to write a script with the same name as a standard library module. When

this results in errors, we now display a more helpful error message:

$ python random.py
Traceback (most recent call last):
File "/home/me/random.py", line 1, in <module>
import random
File "/home/me/random.py", line 3, in <module>
print (random.randint (5))
AttributeError: module 'random' has no attribute 'randint' (consider renaming '/
—home/me/random.py' since it has the same name as the standard library module,

—named 'random' and prevents importing that standard library module)

Similarly, if a script has the same name as a third-party module that it attempts to import and

this results in errors, we also display a more helpful error message:

$ python numpy.py
Traceback (most recent call last):
File "/home/me/numpy.py", line 1, in <module>
import numpy as np
File "/home/me/numpy.py", line 3, in <module>
np.array([1, 2, 3])

AttributeError: module 'numpy' has no attribute 'array' (consider renaming '/

—home/me/numpy.py' if it has the same name as a library you intended to import)

J

(Contributed by Shantanu Jain in gh-95754.)

https://github.com/python/cpython/issues/111201
https://no-color.org/
https://force-color.org/
https://github.com/python/cpython/issues/112730
https://github.com/python/cpython/issues/95754

e The error message now tries to suggest the correct keyword argument when an incorrect keyword

argument is passed to a function.

>>> "Better error messages!".split(max_split=1)
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>

"Better error messages!".split(max_split=1)

TypeError: split() got an unexpected keyword argument 'max_split'. Did you mean

— 'maxsplit'?

(Contributed by Pablo Galindo Salgado and Shantanu Jain in gh-107944.)

2.3 Free-threaded CPython

CPython now has experimental support for running in a free-threaded mode, with the global interpreter
lock (GIL) disabled. This is an experimental feature and therefore is not enabled by default. The
free-threaded mode requires a different executable, usually called python3.13t or python3.13t.exe.
Pre-built binaries marked as free-threaded can be installed as part of the official Windows and macOS

installers, or CPython can be built from source with the -~-disable-gil option.

Free-threaded execution allows for full utilization of the available processing power by running threads
in parallel on available CPU cores. While not all software will benefit from this automatically, programs
designed with threading in mind will run faster on multi-core hardware. The free-threaded mode is
experimental and work is ongoing to improve it: expect some bugs and a substantial single-threaded
performance hit. Free-threaded builds of CPython support optionally running with the GIL enabled at

runtime using the environment variable PYTHON_GIL or the command-line option -X gil=1.

To check if the current interpreter supports free-threading, python -VV and sys.version contain "exper-
imental free-threading build”. The new sys._is_gil_enabled() function can be used to check whether

the GIL is actually disabled in the running process.

C-API extension modules need to be built specifically for the free-threaded build. Extensions that
support running with the GIL disabled should use the Py_mod_gil slot. Extensions using single-phase
init should use PyUnstable_Module_SetGIL() to indicate whether they support running with the GIL
disabled. Importing C extensions that don’t use these mechanisms will cause the GIL to be enabled,
unless the GIL was explicitly disabled with the PYTHON_GIL environment variable or the -X gil=0 option.

pip 24.1 or newer is required to install packages with C extensions in the free-threaded build.

This work was made possible thanks to many individuals and organizations, including the large com-
munity of contributors to Python and third-party projects to test and enable free-threading support.
Notable contributors include: Sam Gross, Ken Jin, Donghee Na, Itamar Oren, Matt Page, Brett Sim-
mers, Dino Viehland, Carl Meyer, Nathan Goldbaum, Ralf Gommers, Lysandros Nikolaou, and many
others. Many of these contributors are employed by Meta, which has provided significant engineering

resources to support this project.

https://github.com/python/cpython/issues/107944

& 2E

PEP 703 "Making the Global Interpreter Lock Optional in CPython” contains rationale and infor-

mation surrounding this work.

Porting Extension Modules to Support Free-Threading: A community-maintained porting guide for

extension authors.

2.4 An experimental just-in-time (JIT) compiler

When CPython is configured and built using the --enable-experimental-jit option, a just-in-time
(JIT) compiler is added which may speed up some Python programs. On Windows, use PCbuild/build.
bat --experimental-jit to enable the JIT or --experimental-jit-interpreter to enable the Tier 2
interpreter. Build requirements and further supporting information are contained at Tools/jit/README.
md.

The --enable-experimental-jit option takes these (optional) values, defaulting to yes if

--enable-experimental-jit is present without the optional value.
o no: Disable the entire Tier 2 and JIT pipeline.
o yes: Enable the JIT. To disable the JIT at runtime, pass the environment variable PYTHON_JIT=0.

e yes-off: Build the JIT but disable it by default. To enable the JIT at runtime, pass the environ-
ment variable PYTHON_JIT=1.

e interpreter: Enable the Tier 2 interpreter but disable the JIT. The interpreter can be disabled
by running with PYTHON_JIT=0.

The internal architecture is roughly as follows:
o We start with specialized Tier 1 bytecode. See What’s new in 3.11 for details.

e When the Tier 1 bytecode gets hot enough, it gets translated to a new purely internal intermediate

representation (IR), called the Tier 2 IR, and sometimes referred to as micro-ops ("uops”).

e The Tier 2 IR uses the same stack-based virtual machine as Tier 1, but the instruction format is

better suited to translation to machine code.

e We have several optimization passes for Tier 2 IR, which are applied before it is interpreted or

translated to machine code.

e There is a Tier 2 interpreter, but it is mostly intended for debugging the earlier stages of
the optimization pipeline. The Tier 2 interpreter can be enabled by configuring Python with

--enable-experimental-jit=interpreter.

e When the JIT is enabled, the optimized Tier 2 IR is translated to machine code, which is then

executed.

e The machine code translation process uses a technique called copy-and-patch. It has no runtime

https://peps.python.org/pep-0703/
https://py-free-threading.github.io/porting/
https://github.com/python/cpython/blob/main/Tools/jit/README.md

dependencies, but there is a new build-time dependency on LLVM.

& BE

PEP 744

(JIT by Brandt Bucher, inspired by a paper by Haoran Xu and Fredrik Kjolstad. Tier 2 IR by Mark

Shannon and Guido van Rossum. Tier 2 optimizer by Ken Jin.)

2.5 Defined mutation semantics for locals()

Historically, the expected result of mutating the return value of locals() has been left to individual
Python implementations to define. Starting from Python 3.13, PEP 667 standardises the historical
behavior of CPython for most code execution scopes, but changes optimized scopes (functions, generators,
coroutines, comprehensions, and generator expressions) to explicitly return independent snapshots of the

currently assigned local variables, including locally referenced nonlocal variables captured in closures.

This change to the semantics of 1ocals() in optimized scopes also affects the default behavior of code
execution functions that implicitly target locals () if no explicit namespace is provided (such as exec ()
and eval()). In previous versions, whether or not changes could be accessed by calling locals() after
calling the code execution function was implementation-dependent. In CPython specifically, such code
would typically appear to work as desired, but could sometimes fail in optimized scopes based on other
code (including debuggers and code execution tracing tools) potentially resetting the shared snapshot
in that scope. Now, the code will always run against an independent snapshot of the local variables in
optimized scopes, and hence the changes will never be visible in subsequent calls to locals(). To access
the changes made in these cases, an explicit namespace reference must now be passed to the relevant
function. Alternatively, it may make sense to update affected code to use a higher level code execution
API that returns the resulting code execution namespace (e.g. runpy.run_path() when executing
Python files from disk).

To ensure debuggers and similar tools can reliably update local variables in scopes affected by this change,
FrameType.f_locals now returns a write-through proxy to the frame’s local and locally referenced
nonlocal variables in these scopes, rather than returning an inconsistently updated shared dict instance

with undefined runtime semantics.

See PEP 667 for more details, including related C API changes and deprecations. Porting notes are
also provided below for the affected Python APIs and C' APIs.

(PEP and implementation contributed by Mark Shannon and Tian Gao in gh-74929. Documentation
updates provided by Guido van Rossum and Alyssa Coghlan.)

10

https://peps.python.org/pep-0744/
https://peps.python.org/pep-0667/
https://peps.python.org/pep-0667/
https://github.com/python/cpython/issues/74929

2.6 Support for mobile platforms

PEP 730: i0OS is now a PEP 11 supported platform, with the arm64-apple-ios and
arm64-apple-ios-simulator targets at tier 3 (iPhone and iPad devices released after 2013 and the
Xcode i0S simulator running on Apple silicon hardware, respectively). x86_64-apple-ios-simulator
(the Xcode i0OS simulator running on older x86_64 hardware) is not a tier 3 supported platform, but
will have best-effort support. (PEP written and implementation contributed by Russell Keith-Magee in
gh-114099.)

PEP 738: Android is now a PEP 11 supported platform, with the aarch64-linux-android
and x86_64-linux-android targets at tier 3. The 32-bit targets arm-linux-androideabi and
i686-1inux-android are not tier 3 supported platforms, but will have best-effort support. (PEP written
and implementation contributed by Malcolm Smith in gh-116622.)

o B

PEP 730, PEP 738

3 Other Language Changes

e The compiler now strips common leading whitespace from every line in a docstring. This reduces
the size of the bytecode cache (such as .pyc files), with reductions in file size of around 5%, for
example in sqlalchemy.orm.session from SQLAlchemy 2.0. This change affects tools that use

docstrings, such as doctest.

>>> def spam():
Thts is a docstring with

leading whitespace.

It even has multiple paragraphs!

mmnn

>>> spam.__doc

'\nThis is a docstring with\n leading whitespace.\n\nIt even has multiple,

—paragraphs!\n'

(Contributed by Inada Naoki in gh-81283.)

e Annotation scopes within class scopes can now contain lambdas and comprehensions. Compre-

hensions that are located within class scopes are not inlined into their parent scope.

class C[T]:
type Alias = lambda: T

11

https://peps.python.org/pep-0730/
https://peps.python.org/pep-0011/
https://github.com/python/cpython/issues/114099
https://peps.python.org/pep-0738/
https://peps.python.org/pep-0011/
https://github.com/python/cpython/issues/116622
https://peps.python.org/pep-0730/
https://peps.python.org/pep-0738/
https://github.com/python/cpython/issues/81283

(Contributed by Jelle Zijlstra in gh-109118 and gh-118160.)

Future statements are no longer triggered by relative imports of the __future__ module, meaning
that statements of the form from .__future__ import ... are now simply standard relative im-

ports, with no special features activated. (Contributed by Jeremiah Gabriel Pascual in gh-118216.)

global declarations are now permitted in except blocks when that global is used in the else block.

Previously this raised an erroneous SyntaxError. (Contributed by Irit Katriel in gh-111123.)

Add PYTHON_FROZEN_MODULES, a new environment variable that determines whether frozen mod-
ules are ignored by the import machinery, equivalent to the -X frozen_modules command-line
option. (Contributed by Yilei Yang in gh-111374.)

Add support for the perf profiler working without frame pointers through the new environment
variable PYTHON_PERF_JIT_SUPPORT and command-line option -X perf_jit. (Contributed by
Pablo Galindo in gh-118518.)

The location of a .python_history file can be changed via the new PYTHON_HISTORY environment
variable. (Contributed by Levi Sabah, Zackery Spytz and Hugo van Kemenade in gh-73965.)

Classes have a new __static_attributes__ attribute. This is populated by the compiler with a
tuple of the class’s attribute names which are assigned through self.<name> from any function
in its body. (Contributed by Irit Katriel in gh-115775.)

The compiler now creates a __firstlineno__ attribute on classes with the line number of the
first line of the class definition. (Contributed by Serhiy Storchaka in gh-118465.)

The exec() and eval() builtins now accept the globals and locals arguments as keywords. (Con-
tributed by Raphael Gaschignard in gh-105879)

The compile() builtin now accepts a new flag, ast.PyCF_OPTIMIZED_AST, which is similar to
ast.PyCF_ONLY_AST except that the returned AST is optimized according to the value of the
optimize argument. (Contributed by Irit Katriel in gh-108113).

Add a __name__ attribute on property objects. (Contributed by Eugene Toder in gh-101860.)

Add PythonFinalizationError, a new exception derived from RuntimeError and used to
signal when operations are blocked during finalization. The following callables now raise

PythonFinalizationError, instead of RuntimeError:

_thread.start_new_thread()

os.fork()

os.forkpty()
— subprocess.Popen
(Contributed by Victor Stinner in gh-114570.)

Allow the count argument of str.replace() to be a keyword. (Contributed by Hugo van Keme-
nade in gh-106487.)

12

https://github.com/python/cpython/issues/109118
https://github.com/python/cpython/issues/118160
https://github.com/python/cpython/issues/118216
https://github.com/python/cpython/issues/111123
https://github.com/python/cpython/issues/111374
https://en.wikipedia.org/wiki/Call_stack
https://github.com/python/cpython/issues/118518
https://github.com/python/cpython/issues/73965
https://github.com/python/cpython/issues/115775
https://github.com/python/cpython/issues/118465
https://github.com/python/cpython/issues/105879
https://github.com/python/cpython/issues/108113
https://github.com/python/cpython/issues/101860
https://github.com/python/cpython/issues/114570
https://github.com/python/cpython/issues/106487

e Many functions now emit a warning if a boolean value is passed as a file descriptor argument.

This can help catch some errors earlier. (Contributed by Serhiy Storchaka in gh-82626.)

e Added name and mode attributes for compressed and archived file-like objects in the bz2, 1zma,

tarfile, and zipfile modules. (Contributed by Serhiy Storchaka in gh-115961.)

4 New Modules

o dbm.sqlite3: An SQLite backend for dbm. (Contributed by Raymond Hettinger and Erlend E.
Aasland in gh-100414.)

5 Improved Modules

5.1 argparse

e Add the deprecated parameter to the add_argument () and add_parser() methods, to enable
deprecating command-line options, positional arguments, and subcommands. (Contributed by
Serhiy Storchaka in gh-83648.)

5.2 array

o Add the 'w' type code (Py_UCS4) for Unicode characters. It should be used instead of the depre-
cated 'u' type code. (Contributed by Inada Naoki in gh-80480.)

o Register array.array as a MutableSequence by implementing the clear () method. (Contributed
by Mike Zimin in gh-114894.)

5.3 ast

o The constructors of node types in the ast module are now stricter in the arguments they accept,

with more intuitive behavior when arguments are omitted.

If an optional field on an AST node is not included as an argument when constructing an instance,
the field will now be set to None. Similarly, if a list field is omitted, that field will now be set to
an empty list, and if an expr_context field is omitted, it defaults to Load(). (Previously, in all

cases, the attribute would be missing on the newly constructed AST node instance.)

In all other cases, where a required argument is omitted, the node constructor will emit a
DeprecationWarning. This will raise an exception in Python 3.15. Similarly, passing a keyword
argument to the constructor that does not map to a field on the AST node is now deprecated, and

will raise an exception in Python 3.15.

These changes do not apply to user-defined subclasses of ast.AST unless the class opts in to the

new behavior by defining the AST._field_types mapping.
(Contributed by Jelle Zijlstra in gh-105858, gh-117486, and gh-118851.)

e ast.parse() now accepts an optional argument optimize which is passed on to compile(). This
makes it possible to obtain an optimized AST. (Contributed by Irit Katriel in gh-108113.)
13

https://github.com/python/cpython/issues/82626
https://github.com/python/cpython/issues/115961
https://github.com/python/cpython/issues/100414
https://github.com/python/cpython/issues/83648
https://github.com/python/cpython/issues/80480
https://github.com/python/cpython/issues/114894
https://github.com/python/cpython/issues/105858
https://github.com/python/cpython/issues/117486
https://github.com/python/cpython/issues/118851
https://github.com/python/cpython/issues/108113

5.4 asyncio

e asyncio.as_completed() now returns an object that is both an asynchronous iterator and a
plain iterator of awaitables. The awaitables yielded by asynchronous iteration include original
task or future objects that were passed in, making it easier to associate results with the tasks

being completed. (Contributed by Justin Arthur in gh-77714.)

e asyncio.loop.create_unix_server () will now automatically remove the Unix socket when the

server is closed. (Contributed by Pierre Ossman in gh-111246.)

e DatagramTransport.sendto() will now send zero-length datagrams if called with an empty bytes
object. The transport flow control also now accounts for the datagram header when calculating
the buffer size. (Contributed by Jamie Phan in gh-115199.)

o Add Queue.shutdown and QueueShutDown to manage queue termination. (Contributed by Laurie

Opperman and Yves Duprat in gh-104228.)

e Add the Server.close_clients() and Server.abort_clients() methods, which more forcefully

close an asyncio server. (Contributed by Pierre Ossman in gh-113538.)

e Accept a tuple of separators in StreamReader.readuntil(), stopping when any one of them is

encountered. (Contributed by Bruce Merry in gh-81322.)

o Improve the behavior of TaskGroup when an external cancellation collides with an internal cancel-
lation. For example, when two task groups are nested and both experience an exception in a child
task simultaneously, it was possible that the outer task group would hang, because its internal

cancellation was swallowed by the inner task group.

In the case where a task group is cancelled externally and also must raise an ExceptionGroup,
it will now call the parent task’s cancel() method. This ensures that a CancelledError will be

raised at the next await, so the cancellation is not lost.

An added benefit of these changes is that task groups now preserve the cancellation count

(cancelling()).

In order to handle some corner cases, uncancel () may now reset the undocumented _must_cancel

flag when the cancellation count reaches zero.
(Inspired by an issue reported by Arthur Tacca in gh-116720.)

e When TaskGroup.create_task() is called on an inactive TaskGroup, the given coroutine will
be closed (which prevents a RuntimeWarning about the given coroutine being never awaited).

(Contributed by Arthur Tacca and Jason Zhang in gh-115957.)

5.5 base64

e Add z85encode() and z85decode() functions for encoding bytes as 785 data and decoding
785-encoded data to bytes. (Contributed by Matan Perelman in gh-75299.)

14

https://github.com/python/cpython/issues/77714
https://github.com/python/cpython/issues/111246
https://github.com/python/cpython/issues/115199
https://github.com/python/cpython/issues/104228
https://github.com/python/cpython/issues/113538
https://github.com/python/cpython/issues/81322
https://github.com/python/cpython/issues/116720
https://github.com/python/cpython/issues/115957
https://rfc.zeromq.org/spec/32/
https://github.com/python/cpython/issues/75299

5.6 compileall
e The default number of worker threads and processes is now selected wusing os.
process_cpu_count () instead of os.cpu_count (). (Contributed by Victor Stinner in gh-109649.)
5.7 concurrent.futures
e The default number of worker threads and processes is now selected using os.
process_cpu_count () instead of os.cpu_count (). (Contributed by Victor Stinner in gh-109649.)
5.8 configparser

e ConfigParser now has support for unnamed sections, which allows for top-level key-value pairs.
This can be enabled with the new allow unnamed_section parameter. (Contributed by Pedro
Sousa Lacerda in gh-66449.)

5.9 copy

e The new replace() function and the replace protocol make creating modified copies of objects
much simpler. This is especially useful when working with immutable objects. The following types

support the replace() function and implement the replace protocol:

collections.namedtuple ()

dataclasses.dataclass
— datetime.datetime, datetime.date, datetime.time

— inspect.Signature, inspect.Parameter

types.SimpleNamespace

code objects
Any user-defined class can also support copy.replace() by defining the __replace__() method.
(Contributed by Serhiy Storchaka in gh-108751.)

5.10 ctypes

e As a consequence of necessary internal refactoring, initialization of internal metaclasses now hap-
pens in __init__ rather than in __new__. This affects projects that subclass these internal

metaclasses to provide custom initialization. Generally:

— Custom logic that was done in __new__ after calling super () .__new__ should be moved to

__init__.
— To create a class, call the metaclass, not only the metaclass’s __new__ method.
See gh-124520 for discussion and links to changes in some affected projects.

e ctypes.Structure objects have a new _align_ attribute which allows the alignment of the struc-

15

https://github.com/python/cpython/issues/109649
https://github.com/python/cpython/issues/109649
https://github.com/python/cpython/issues/66449
https://github.com/python/cpython/issues/108751
https://github.com/python/cpython/issues/124520

5.11

5.12

5.13

5.14

ture being packed to/from memory to be specified explicitly. (Contributed by Matt Sanderson in
gh-112433)

dbm

Add dbm.sqlite3, a new module which implements an SQLite backend, and make it the default
dbm backend. (Contributed by Raymond Hettinger and Erlend E. Aasland in gh-100414.)

Allow removing all items from the database through the new gdbm.clear() and ndbm.clear ()
methods. (Contributed by Donghee Na in gh-107122.)

dis

Change the output of dis module functions to show logical labels for jump targets and exception
handlers, rather than offsets. The offsets can be added with the new -0 command-line option or

the show_ offsets argument. (Contributed by Irit Katriel in gh-112137.)

get_instructions() no longer represents cache entries as separate instructions. Instead, it re-
turns them as part of the Instruction, in the new cache info field. The show caches argument
to get_instructions() is deprecated and no longer has any effect. (Contributed by Irit Katriel
in gh-112962.)

doctest

doctest output is now colored by default. This can be controlled via the new PYTHON_COLORS
environment variable as well as the canonical NO_COLOR and FORCE_COLOR environment variables.

See also using-on-controlling-color. (Contributed by Hugo van Kemenade in gh-117225.)

The DocTestRunner.run() method now counts the number of skipped tests. Add the
DocTestRunner.skips and TestResults.skipped attributes. (Contributed by Victor Stinner
in gh-108794.)

email

Headers with embedded newlines are now quoted on output. The generator will now refuse to
serialize (write) headers that are improperly folded or delimited, such that they would be parsed
as multiple headers or joined with adjacent data. If you need to turn this safety feature off, set

verify_generated_headers. (Contributed by Bas Bloemsaat and Petr Viktorin in gh-121650.)

getaddresses() and parseaddr() now return ('', '') pairs in more situations where invalid
email addresses are encountered instead of potentially inaccurate values. The two functions have
a new optional strict parameter (default True). To get the old behavior (accepting malformed
input), use strict=False. getattr(email.utils, 'supports_strict_parsing', False) can
be used to check if the strict parameter is available. (Contributed by Thomas Dwyer and Victor
Stinner for gh-102988 to improve the CVE 2023-27043 fix.)

16

https://github.com/python/cpython/issues/112433
https://github.com/python/cpython/issues/100414
https://github.com/python/cpython/issues/107122
https://github.com/python/cpython/issues/112137
https://github.com/python/cpython/issues/112962
https://no-color.org/
https://force-color.org/
https://github.com/python/cpython/issues/117225
https://github.com/python/cpython/issues/108794
https://github.com/python/cpython/issues/121650
https://github.com/python/cpython/issues/102988
https://www.cve.org/CVERecord?id=CVE-2023-27043

5.15 enum

e EnumDict has been made public to better support subclassing EnumType.

5.16 fractions
e Fraction objects now support the standard format specification mini-language rules for fill,
alignment, sign handling, minimum width, and grouping. (Contributed by Mark Dickinson in

gh-111320.)

5.17 glob

e Add translate(), a function to convert a path specification with shell-style wildcards to a regular

expression. (Contributed by Barney Gale in gh-72904.)

5.18 importlib

o The following functions in importlib.resources now allow accessing a directory (or tree)
of resources, using multiple positional arguments (the encoding and errors arguments in the

text-reading functions are now keyword-only):

— is_resource()

open_binary()

open_text ()
— path()

— read_binary()

read_text ()

These functions are no longer deprecated and are not scheduled for removal. (Contributed by Petr

Viktorin in gh-116608.)
e contents() remains deprecated in favor of the fully-featured Traversable API. However, there
is now no plan to remove it. (Contributed by Petr Viktorin in gh-116608.)
5.19 io

e The I0Base finalizer now logs any errors raised by the close () method with sys.unraisablehook.
Previously, errors were ignored silently by default, and only logged in Python Development Mode
or when using a Python debug build. (Contributed by Victor Stinner in gh-62948.)

17

https://github.com/python/cpython/issues/111320
https://github.com/python/cpython/issues/72904
https://github.com/python/cpython/issues/116608
https://github.com/python/cpython/issues/116608
https://github.com/python/cpython/issues/62948

5.20

5.21

5.22

5.23

5.24

5.25

ipaddress

Add the IPv4Address.ipv6_mapped property, which returns the IPv4-mapped IPv6 address.
(Contributed by Charles Machalow in gh-109466.)

Fix is_global and is_private behavior in IPv4Address, IPv6Address, IPv4Network, and
IPv6Network. (Contributed by Jakub Stasiak in gh-113171.)

itertools

batched () has a new strict parameter, which raises a ValueError if the final batch is shorter than

the specified batch size. (Contributed by Raymond Hettinger in gh-113202.)

marshal

Add the allow code parameter in module functions. Passing allow_code=False prevents seri-
alization and de-serialization of code objects which are incompatible between Python versions.
(Contributed by Serhiy Storchaka in gh-113626.)

math

The new function fma () performs fused multiply-add operations. This computes x * y + z with
only a single round, and so avoids any intermediate loss of precision. It wraps the fma () function
provided by C99, and follows the specification of the IEEE 754 ”fusedMultiplyAdd” operation for
special cases. (Contributed by Mark Dickinson and Victor Stinner in gh-73468.)

mimetypes

Add the guess_file_type () function to guess a MIME type from a filesystem path. Using paths
with guess_type () is now soft deprecated. (Contributed by Serhiy Storchaka in gh-66543.)

mmap

mmap is now protected from crashing on Windows when the mapped memory is inaccessible due

to file system errors or access violations. (Contributed by Jannis Weigend in gh-118209.)

mmap has a new seekable() method that can be used when a seekable file-like object is required.
The seek() method now returns the new absolute position. (Contributed by Donghee Na and

Sylvie Liberman in gh-111835.)

The new UNIX-only trackfd parameter for mmap controls file descriptor duplication; if false, the
file descriptor specified by fileno will not be duplicated. (Contributed by Zackery Spytz and Petr
Viktorin in gh-78502.)

18

https://github.com/python/cpython/issues/109466
https://github.com/python/cpython/issues/113171
https://github.com/python/cpython/issues/113202
https://github.com/python/cpython/issues/113626
https://github.com/python/cpython/issues/73468
https://github.com/python/cpython/issues/66543
https://github.com/python/cpython/issues/118209
https://github.com/python/cpython/issues/111835
https://github.com/python/cpython/issues/78502

5.26

5.27

5.28

multiprocessing

The default number of worker threads and processes is now selected wusing os.

process_cpu_count () instead of os.cpu_count (). (Contributed by Victor Stinner in gh-109649.)

0s

Add process_cpu_count () function to get the number of logical CPU cores usable by the calling
thread of the current process. (Contributed by Victor Stinner in gh-109649.)

cpu_count () and process_cpu_count () can be overridden through the new environment variable
PYTHON_CPU_COUNT or the new command-line option -X cpu_count. This option is useful for users
who need to limit CPU resources of a container system without having to modify application code

or the container itself. (Contributed by Donghee Na in gh-109595.)

Add a low level interface to Linux’s timer file descriptors via timerfd_create(),
timerfd_settime(), timerfd_settime_ns(), timerfd_gettime(), timerfd_gettime_ns(),
TFD_NONBLOCK, TFD_CLOEXEC, TFD_TIMER_ABSTIME, and TFD_TIMER_CANCEL_ON_SET (Contributed
by Masaru Tsuchiyama in gh-108277.)

lchmod () and the follow symlinks argument of chmod() are both now available on Windows.
Note that the default value of follow symlinks in 1chmod() is False on Windows. (Contributed
by Serhiy Storchaka in gh-59616.)

fchmod () and support for file descriptors in chmod () are both now available on Windows. (Con-
tributed by Serhiy Storchaka in gh-113191.)

On Windows, mkdir () and makedirs () now support passing a mode value of 00700 to apply access
control to the new directory. This implicitly affects tempfile.mkdtemp() and is a mitigation for
CVE 2024-4030. Other values for mode continue to be ignored. (Contributed by Steve Dower
in gh-118486.)

posix_spawn() now accepts None for the env argument, which makes the newly spawned process

use the current process environment. (Contributed by Jakub Kulik in gh-113119.)

posix_spawn() can now use the POSIX_SPAWN_CLOSEFROM attribute in the file actions parameter
on platforms that support posix_spawn_file_actions_addclosefrom_np(). (Contributed by
Jakub Kulik in gh-113117.)

os.path

Add isreserved() to check if a path is reserved on the current system. This function is only

available on Windows. (Contributed by Barney Gale in gh-88569.)

On Windows, isabs() no longer considers paths starting with exactly one slash (\ or /) to be

absolute. (Contributed by Barney Gale and Jon Foster in gh-44626.)

realpath() now resolves MS-DOS style file names even if the file is not accessible. (Contributed
by Moonsik Park in gh-82367.)

19

https://github.com/python/cpython/issues/109649
https://github.com/python/cpython/issues/109649
https://github.com/python/cpython/issues/109595
https://manpages.debian.org/timerfd_create(2)
https://github.com/python/cpython/issues/108277
https://github.com/python/cpython/issues/59616
https://github.com/python/cpython/issues/113191
https://www.cve.org/CVERecord?id=CVE-2024-4030
https://github.com/python/cpython/issues/118486
https://github.com/python/cpython/issues/113119
https://github.com/python/cpython/issues/113117
https://github.com/python/cpython/issues/88569
https://github.com/python/cpython/issues/44626
https://github.com/python/cpython/issues/82367

5.29 pathlib

Add UnsupportedOperation, which is raised instead of NotImplementedError when a path op-
eration isn’t supported. (Contributed by Barney Gale in gh-89812.)

Add a new constructor for creating Path objects from ’file’ URIs (file:///), Path.from_uri().
(Contributed by Barney Gale in gh-107465.)

Add PurePath.full_match() for matching paths with shell-style wildcards, including the recur-
sive wildcard "#*”. (Contributed by Barney Gale in gh-73435.)

Add the PurePath.parser class attribute to store the implementation of os . path used for low-level

path parsing and joining. This will be either posixpath or ntpath.

Add recurse__symlinks keyword-only argument to Path.glob() and rglob(). (Contributed by
Barney Gale in gh-77609.)

Path.glob() and rglob() now return files and directories when given a pattern that ends with

"sx”. Previously, only directories were returned. (Contributed by Barney Gale in gh-70303.)

Add the follow symlinks keyword-only argument to Path.is_file, Path.is_dir, Path.owner(),
and Path.group(). (Contributed by Barney Gale in gh-105793 and Kamil Turek in gh-107962.)

5.30 pdb

5.31

breakpoint () and set_trace() now enter the debugger immediately rather than on the next
line of code to be executed. This change prevents the debugger from breaking outside of the
context when breakpoint () is positioned at the end of the context. (Contributed by Tian Gao
in gh-118579.)

sys.path[0] is no longer replaced by the directory of the script being debugged when sys.flags.
safe_path is set. (Contributed by Tian Gao and Christian Walther in gh-111762.)

zipapp is now supported as a debugging target. (Contributed by Tian Gao in gh-118501.)

Add ability to move between chained exceptions during post-mortem debugging in pm() using
the new exceptions [exc_number] command for Pdb. (Contributed by Matthias Bussonnier in
gh-106676.)

Expressions and statements whose prefix is a pdb command are now correctly identified and
executed. (Contributed by Tian Gao in gh-108464.)

queue

Add Queue.shutdown and ShutDown to manage queue termination. (Contributed by Laurie Op-

perman and Yves Duprat in gh-104750.)

20

https://github.com/python/cpython/issues/89812
https://github.com/python/cpython/issues/107465
https://github.com/python/cpython/issues/73435
https://github.com/python/cpython/issues/77609
https://github.com/python/cpython/issues/70303
https://github.com/python/cpython/issues/105793
https://github.com/python/cpython/issues/107962
https://github.com/python/cpython/issues/118579
https://github.com/python/cpython/issues/111762
https://github.com/python/cpython/issues/118501
https://github.com/python/cpython/issues/106676
https://github.com/python/cpython/issues/108464
https://github.com/python/cpython/issues/104750

5.32 random

o Add a command-line interface. (Contributed by Hugo van Kemenade in gh-118131.)

5.33 re
e Rename re.error to PatternError for improved clarity. re.error is kept for backward compat-
ibility.
5.34 shutil
o Support the dir_fd and follow__symlinks keyword arguments in chown(). (Contributed by Berker
Peksag and Tahia K in gh-62308)
5.35 site

o .pth files are now decoded using UTF-8 first, and then with the locale encoding if UTF-8 decoding
fails. (Contributed by Inada Naoki in gh-117802.)

5.36 sqlite3

e A ResourceWarning is now emitted if a Connection object is not closed explicitly. (Contributed
by Erlend E. Aasland in gh-105539.)

e Add the filter keyword-only parameter to Connection.iterdump() for filtering database objects
to dump. (Contributed by Mariusz Felisiak in gh-91602.)

5.37 ssl

e The create_default_context() API now includes VERIFY_X509_ PARTIAL CHAIN and
VERIFY_X509_STRICT in its default flags.

O IR
VERIFY_X509_STRICT may reject pre-RFC 5280 or malformed certificates that the underlying

OpenSSL implementation might otherwise accept. Whilst disabling this is not recommended,

you can do so using:

import ssl

ctx = ssl.create_default_context()
ctx.verify_flags &= ~ssl.VERIFY_X509_STRICT

(Contributed by William Woodruff in gh-112389.)

21

https://github.com/python/cpython/issues/118131
https://github.com/python/cpython/issues/62308
https://github.com/python/cpython/issues/117802
https://github.com/python/cpython/issues/105539
https://github.com/python/cpython/issues/91602
https://datatracker.ietf.org/doc/html/rfc5280.html
https://github.com/python/cpython/issues/112389

5.38

5.39

5.40

5.41

5.42

statistics

Add kde () for kernel density estimation. This makes it possible to estimate a continuous probabil-
ity density function from a fixed number of discrete samples. (Contributed by Raymond Hettinger
in gh-115863.)

Add kde_random() for sampling from an estimated probability density function created by kde ().
(Contributed by Raymond Hettinger in gh-115863.)

subprocess
The subprocess module now uses the posix_spawn() function in more situations.

Notably, when close_fds is True (the default), posix_spawn () will be used when the C library pro-
vides posix_spawn_file_actions_addclosefrom_np(), which includes recent versions of Linux,
FreeBSD, and Solaris. On Linux, this should perform similarly to the existing Linux vfork()

based code.

A private control knob subprocess._USE_POSIX_SPAWN can be set to False if you need to force
subprocess to never use posix_spawn(). Please report your reason and platform details in
the issue tracker if you set this so that we can improve our API selection logic for everyone.
(Contributed by Jakub Kulik in gh-113117.)

sys
Add the _is_interned() function to test if a string was interned. This function is not guaranteed
to exist in all implementations of Python. (Contributed by Serhiy Storchaka in gh-78573.)

tempfile

On Windows, the default mode 00700 used by tempfile.mkdtemp () now limits access to the new
directory due to changes to os.mkdir (). This is a mitigation for CVE 2024-4030. (Contributed
by Steve Dower in gh-118486.)

time

On Windows, monotonic () now uses the QueryPerformanceCounter () clock for a resolution of 1
microsecond, instead of the GetTickCount64 () clock which has a resolution of 15.6 milliseconds.

(Contributed by Victor Stinner in gh-88494.)

On Windows, time() now uses the GetSystemTimePreciseAsFileTime() clock for a resolution
of 1 microsecond, instead of the GetSystemTimeAsFileTime () clock which has a resolution of 15.6

milliseconds. (Contributed by Victor Stinner in gh-63207.)

22

https://github.com/python/cpython/issues/115863
https://github.com/python/cpython/issues/115863
https://github.com/python/cpython/issues/113117
https://github.com/python/cpython/issues/78573
https://www.cve.org/CVERecord?id=CVE-2024-4030
https://github.com/python/cpython/issues/118486
https://github.com/python/cpython/issues/88494
https://github.com/python/cpython/issues/63207

5.43

5.44

tkinter

Add tkinter widget methods: tk_busy_hold(), tk_busy_configure(), tk_busy_cget(),
tk_busy_forget (), tk_busy_current(), and tk_busy_status(). (Contributed by Miguel,
klappnase and Serhiy Storchaka in gh-72684.)

The tkinter widget method wm_attributes() now accepts the attribute name without the minus
prefix to get window attributes, for example w.wm_attributes('alpha') and allows specifying
attributes and values to set as keyword arguments, for example w.wm_attributes(alpha=0.5).
(Contributed by Serhiy Storchaka in gh-43457.)

wm_attributes() can now return attributes as a dict, by using the new optional keyword-only

parameter return_python__dict. (Contributed by Serhiy Storchaka in gh-43457.)

Text.count () can now return a simple int when the new optional keyword-only parameter re-
turn__ints is used. Otherwise, the single count is returned as a 1-tuple or None. (Contributed by
Serhiy Storchaka in gh-97928.)

Support the "vsapi” element type in the element_create () method of tkinter.ttk.Style. (Con-
tributed by Serhiy Storchaka in gh-68166.)

Add the after_info () method for Tkinter widgets. (Contributed by Cheryl Sabella in gh-77020.)

Add a new copy_replace() method to PhotoImage to copy a region from one image to an-
other, possibly with pixel zooming, subsampling, or both. (Contributed by Serhiy Storchaka in
gh-118225.)

Add from__coords parameter to the PhotoImage methods copy (), zoom() and subsample(). Add
zoom and subsample parameters to the PhotoImage method copy(). (Contributed by Serhiy
Storchaka in gh-118225.)

Add the PhotoImage methods read() to read an image from a file and data() to get the image
data. Add background and grayscale parameters to the write() method. (Contributed by Serhiy
Storchaka in gh-118271.)

traceback

Add the exc_type_str attribute to TracebackException, which holds a string display of the
exc__type. Deprecate the exc_type attribute, which holds the type object itself. Add parameter
save__exc_type (default True) to indicate whether exc_type should be saved. (Contributed by
Irit Katriel in gh-112332.)

Add a new show_group keyword-only parameter to TracebackException.
format_exception_only() to (recursively) format the mnested exceptions of a

BaseExceptionGroup instance. (Contributed by Irit Katriel in gh-105292.)

23

https://github.com/python/cpython/issues/72684
https://github.com/python/cpython/issues/43457
https://github.com/python/cpython/issues/43457
https://github.com/python/cpython/issues/97928
https://github.com/python/cpython/issues/68166
https://github.com/python/cpython/issues/77020
https://github.com/python/cpython/issues/118225
https://github.com/python/cpython/issues/118225
https://github.com/python/cpython/issues/118271
https://github.com/python/cpython/issues/112332
https://github.com/python/cpython/issues/105292

5.45

5.46

5.47

5.48

5.49

5.50

types

SimpleNamespace can now take a single positional argument to initialise the namespace’s argu-
ments. This argument must either be a mapping or an iterable of key-value pairs. (Contributed
by Serhiy Storchaka in gh-108191.)

typing

PEP 705: Add ReadOnly, a special typing construct to mark a TypedDict item as read-only for
type checkers.

PEP 742: Add Typels, a typing construct that can be used to instruct a type checker how to

narrow a type.

Add NoDefault, a sentinel object used to represent the defaults of some parameters in the typing
module. (Contributed by Jelle Zijlstra in gh-116126.)

Add get_protocol_members() to return the set of members defining a typing.Protocol. (Con-
tributed by Jelle Zijlstra in gh-104873.)

Add is_protocol() to check whether a class is a Protocol. (Contributed by Jelle Zijlstra in
gh-104873.)

ClassVar can now be nested in Final, and vice versa. (Contributed by Mehdi Drissi in gh-89547.)

unicodedata

Update the Unicode database to version 15.1.0. (Contributed by James Gerity in gh-109559.)

venv

Add support for creating source control management (SCM) ignore files in a virtual environment’s
directory. By default, Git is supported. This is implemented as opt-in via the API, which can
be extended to support other SCMs (EnvBuilder and create()), and opt-out via the CLI, using
--without-scm-ignore-files. (Contributed by Brett Cannon in gh-108125.)

warnings

PEP 702: The new warnings.deprecated() decorator provides a way to communicate depre-
cations to a static type checker and to warn on usage of deprecated classes and functions. A
DeprecationWarning may also be emitted when a decorated function or class is used at runtime.
(Contributed by Jelle Zijlstra in gh-104003.)

xml

Allow controlling Expat >=2.6.0 reparse deferral (CVE 2023-52425) by adding five new meth-

ods:

— xml.etree.ElementTree.XMLParser.flush()

24

https://github.com/python/cpython/issues/108191
https://peps.python.org/pep-0705/
https://peps.python.org/pep-0742/
https://github.com/python/cpython/issues/116126
https://github.com/python/cpython/issues/104873
https://github.com/python/cpython/issues/104873
https://github.com/python/cpython/issues/89547
https://www.unicode.org/versions/Unicode15.1.0/
https://github.com/python/cpython/issues/109559
https://github.com/python/cpython/issues/108125
https://peps.python.org/pep-0702/
https://github.com/python/cpython/issues/104003
https://www.cve.org/CVERecord?id=CVE-2023-52425

xml.etree.ElementTree.XMLPullParser.flush()
— xml.parsers.expat.xmlparser.GetReparseDeferralEnabled ()
— xml.parsers.expat.xmlparser.SetReparseDeferralEnabled ()
— xml.sax.expatreader.ExpatParser.flush()

(Contributed by Sebastian Pipping in gh-115623.)

e Add the close() method for the iterator returned by iterparse() for explicit cleanup. (Con-
tributed by Serhiy Storchaka in gh-69893.)

5.51 zipimport

e Add support for ZIP64 format files. Everybody loves huge data, right? (Contributed by Tim
Hatch in gh-94146.)

6 Optimizations

e Several standard library modules have had their import times significantly improved. For example,
the import time of the typing module has been reduced by around a third by removing dependen-
cies on re and contextlib. Other modules to enjoy import-time speedups include email .utils,
enum, functools, importlib.metadata, and threading. (Contributed by Alex Waygood, Shan-
tanu Jain, Adam Turner, Daniel Hollas, and others in gh-109653.)

e textwrap.indent () is now around 30% faster than before for large input. (Contributed by Inada
Naoki in gh-107369.)

e The subprocess module now uses the posix_spawn() function in more situations, including
when close_fds is True (the default) on many modern platforms. This should provide a notable
performance increase when launching processes on FreeBSD and Solaris. See the subprocess section
above for details. (Contributed by Jakub Kulik in gh-113117.)

7 Removed Modules And APlIs

7.1 PEP 594: Remove "dead batteries” from the standard library

PEP 594 proposed removing 19 modules from the standard library, colloquially referred to as ’dead
batteries’ due to their historic, obsolete, or insecure status. All of the following modules were deprecated

in Python 3.11, and are now removed:
e aifc
— standard-aifc: Use the redistribution of aifc library from PyPI.
e audioop
— audioop-lts: Use audioop-1ts library from PyPI.

e chunk

25

https://github.com/python/cpython/issues/115623
https://github.com/python/cpython/issues/69893
https://en.wikipedia.org/wiki/Zip_(file_format)#ZIP64
https://github.com/python/cpython/issues/94146
https://github.com/python/cpython/issues/109653
https://github.com/python/cpython/issues/107369
https://github.com/python/cpython/issues/113117
https://peps.python.org/pep-0594/
https://pypi.org/project/standard-aifc/
https://pypi.org/project/audioop-lts/

— standard-chunk: Use the redistribution of chunk library from PyPIL.
e cgi and cgitb

— cgi.FieldStorage can typically be replaced with urllib.parse.parse_qgsl() for GET and
HEAD requests, and the email .message module or the multipart library for POST and PUT

requests.

— cgi.parse() can be replaced by calling urllib.parse.parse_qgs() directly on the desired
query string, unless the input is multipart/form-data, which should be replaced as described

below for cgi.parse_multipart().

— cgi.parse_header() can be replaced with the functionality in the email package, which

implements the same MIME RFCs. For example, with email .message.EmailMessage:

from email.message import EmailMessage

msg = EmailMessage()
msgl['content-type'] = 'application/json; charset="utf8"'

main, params = msg.get_content_type(), msg['content-type'].params

— cgi.parse_multipart() can be replaced with the functionality in the email package, which
implements the same MIME RFCs, or with the multipart library. For example, the email.

message.EmailMessage and email.message.Message classes.
— standard-cgi: and standard-cgitb: Use the redistribution of cgi and cgitb library from PyPI.

o crypt and the private _crypt extension. The hashlib module may be an appropriate replacement
when simply hashing a value is required. Otherwise, various third-party libraries on PyPI are

available:

— berypt: Modern password hashing for your software and your servers.

passlib: Comprehensive password hashing framework supporting over 30 schemes.
— argon2-cffi: The secure Argon2 password hashing algorithm.

— legacycrypt: ctypes wrapper to the POSIX crypt library call and associated functionality.

crypt_r: Fork of the crypt module, wrapper to the crypt_r(3) library call and associated

functionality.

— standard-crypt and deprecated-crypt-alternative: Use the redistribution of crypt and reim-

plementation of _crypt libraries from PyPI.

e imghdr: The filetype, puremagic, or python-magic libraries should be used as replacements. For
example, the puremagic.what () function can be used to replace the imghdr.what () function for

all file formats that were supported by imghdr.

— standard-imghdr: Use the redistribution of imghdr library from PyPI.

26

https://pypi.org/project/standard-chunk/
https://pypi.org/project/multipart/
https://pypi.org/project/multipart/
https://pypi.org/project/standard-cgi/
https://pypi.org/project/standard-cgitb/
https://pypi.org/project/bcrypt/
https://pypi.org/project/passlib/
https://pypi.org/project/argon2-cffi/
https://pypi.org/project/legacycrypt/
https://pypi.org/project/crypt_r/
https://manpages.debian.org/crypt_r(3)
https://pypi.org/project/standard-crypt/
https://pypi.org/project/deprecated-crypt-alternative/
https://pypi.org/project/filetype/
https://pypi.org/project/puremagic/
https://pypi.org/project/python-magic/
https://pypi.org/project/standard-imghdr/

e mailcap: Use the mimetypes module instead.
— standard-mailcap: Use the redistribution of mailcap library from PyPI.
e msilib
e nis
e nntplib: Use the pynntp library from PyPI instead.
— standard-nntplib: Use the redistribution of nntplib library from PyPI.
e ossaudiodev: For audio playback, use the pygame library from PyPI instead.

o pipes: Use the subprocess module instead. Use shlex.quote() to replace the undocumented

pipes.quote function.
— standard-pipes: Use the redistribution of pipes library from PyPI.
e sndhdr: The filetype, puremagic, or python-magic libraries should be used as replacements.
— standard-sndhdr: Use the redistribution of sndhdr library from PyPI.
e spwd: Use the python-pam library from PyPI instead.
e sunau
— standard-sunau: Use the redistribution of sunau library from PyPI.
e telnetlib, Use the telnetlib3 or Exscript libraries from PyPI instead.
— standard-telnetlib: Use the redistribution of telnetlib library from PyPI.
e uu: Use the base64 module instead, as a modern alternative.
— standard-uu: Use the redistribution of uu library from PyPI.
e xdrlib
— standard-xdrlib: Use the redistribution of xdrlib library from PyPI.

(Contributed by Victor Stinner and Zachary Ware in gh-104773 and gh-104780.)

7.2 2to3

o Remove the 2to3 program and the 1ib2to3 module, previously deprecated in Python 3.11. (Con-
tributed by Victor Stinner in gh-104780.)

7.3 builtins

o Remove support for chained classmethod descriptors (introduced in gh-63272). These can no
longer be used to wrap other descriptors, such as property. The core design of this feature

was flawed and led to several problems. To ”pass-through” a classmethod, consider using the

27

https://pypi.org/project/standard-mailcap/
https://pypi.org/project/pynntp/
https://pypi.org/project/standard-nntplib/
https://pypi.org/project/pygame/
https://pypi.org/project/standard-pipes/
https://pypi.org/project/filetype/
https://pypi.org/project/puremagic/
https://pypi.org/project/python-magic/
https://pypi.org/project/standard-sndhdr/
https://pypi.org/project/python-pam/
https://pypi.org/project/standard-sunau/
https://pypi.org/project/telnetlib3/
https://pypi.org/project/Exscript/
https://pypi.org/project/standard-telnetlib/
https://pypi.org/project/standard-uu/
https://pypi.org/project/standard-xdrlib/
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104780
https://github.com/python/cpython/issues/104780
https://github.com/python/cpython/issues/63272

__wrapped__ attribute that was added in Python 3.10. (Contributed by Raymond Hettinger in
gh-89519.)

o Raise a RuntimeError when calling frame.clear() on a suspended frame (as has always been

the case for an executing frame). (Contributed by Irit Katriel in gh-79932.)

7.4 configparser

e Remove the undocumented LegacyInterpolation class, deprecated in the docstring since Python

3.2, and at runtime since Python 3.11. (Contributed by Hugo van Kemenade in gh-104886.)

7.5 importlib.metadata

e Remove deprecated subscript (__getitem__()) access for EntryPoint objects. (Contributed by
Jason R. Coombs in gh-113175.)

7.6 locale

e Remove the locale.resetlocale() function, deprecated in Python 3.11. Use locale.
setlocale(locale.LC_ALL, "") instead. (Contributed by Victor Stinner in gh-104783.)

7.7 opcode

e Move opcode.ENABLE_SPECIALIZATION to _opcode.ENABLE_SPECTIALIZATION. This field was
added in 3.12, it was never documented, and is not intended for external use. (Contributed
by Irit Katriel in gh-105481.)

e Remove opcode.is_pseudo(), opcode.MIN_PSEUDO_OPCODE, and opcode.MAX_PSEUDO_OPCODE,
which were added in Python 3.12, but were neither documented nor exposed through dis, and

were not intended to be used externally. (Contributed by Irit Katriel in gh-105481.)

7.8 optparse

o This module is no longer considered soft deprecated. While argparse remains preferred for new
projects that aren’t using a third party command line argument processing library, there are
aspects of the way argparse works that mean the lower level optparse module may provide
a better foundation for writing argument processing libraries, and for implementing command
line applications which adhere more strictly than argparse does to various Unix command line
processing conventions that originate in the behaviour of the C getopt () function . (Contributed
by Alyssa Coghlan and Serhiy Storchaka in gh-126180.)

7.9 pathlib

e Remove the ability to use Path objects as context managers. This functionality was deprecated
and has had no effect since Python 3.9. (Contributed by Barney Gale in gh-83863.)

28

https://github.com/python/cpython/issues/89519
https://github.com/python/cpython/issues/79932
https://github.com/python/cpython/issues/104886
https://github.com/python/cpython/issues/113175
https://github.com/python/cpython/issues/104783
https://github.com/python/cpython/issues/105481
https://github.com/python/cpython/issues/105481
https://github.com/python/cpython/issues/126180
https://github.com/python/cpython/issues/83863

7.10

7.11

7.12

7.13

7.14

re

Remove the undocumented, deprecated, and broken re.template() function and re.TEMPLATE /
re.T flag. (Contributed by Serhiy Storchaka and Nikita Sobolev in gh-105687.)

tkinter.tix

Remove the tkinter.tix module, deprecated in Python 3.6. The third-party Tix library which
the module wrapped is unmaintained. (Contributed by Zachary Ware in gh-75552.)

turtle

Remove the RawTurtle.settiltangle () method, deprecated in the documentation since Python

3.1 and at runtime since Python 3.11. (Contributed by Hugo van Kemenade in gh-104876.)

typing

Remove the typing.io and typing.re namespaces, deprecated since Python 3.8. The items in
those namespaces can be imported directly from the typing module. (Contributed by Sebastian
Rittau in gh-92871.)

Remove the keyword-argument method of creating TypedDict types, deprecated in Python 3.11.
(Contributed by Tomas Roun in gh-104786.)
unittest
Remove the following unittest functions, deprecated in Python 3.11:
— unittest.findTestCases()
— unittest.makeSuite()
— unittest.getTestCaseNames ()
Use TestLoader methods instead:
— loadTestsFromModule ()
— loadTestsFromTestCase ()
— getTestCaseNames ()
(Contributed by Hugo van Kemenade in gh-104835.)

Remove the untested and undocumented TestProgram.usageExit() method, deprecated in
Python 3.11. (Contributed by Hugo van Kemenade in gh-104992.)

29

https://github.com/python/cpython/issues/105687
https://github.com/python/cpython/issues/75552
https://github.com/python/cpython/issues/104876
https://github.com/python/cpython/issues/92871
https://github.com/python/cpython/issues/104786
https://github.com/python/cpython/issues/104835
https://github.com/python/cpython/issues/104992

7.15

7.16

urllib

Remove the cafile, capath, and cadefault parameters of the urllib.request.urlopen() function,
deprecated in Python 3.6. Use the contert parameter instead with an SSLContext instance. The
ssl.SSLContext.load_cert_chain() function can be used to load specific certificates, or let
ssl.create_default_context () select the operating system’s trusted certificate authority (CA)

certificates. (Contributed by Victor Stinner in gh-105382.)

webbrowser

Remove the untested and undocumented MacOSX class, deprecated in Python 3.11. Use the
Mac0SX0SAScript class (introduced in Python 3.2) instead. (Contributed by Hugo van Keme-
nade in gh-104804.)

Remove the deprecated MacOSX0SAScript._name attribute. Use the MacOSX0SAScript.name at-
tribute instead. (Contributed by Nikita Sobolev in gh-105546.)

8 New Deprecations

User-defined functions:

— Deprecate assignment to a function’s __code__ attribute, where the new code object’s type
does not match the function’s type. The different types are: plain function, generator, async

generator, and coroutine. (Contributed by Irit Katriel in gh-81137.)
array:

— Deprecate the 'u' format code (wchar_t) at runtime. This format code has been deprecated
in documentation since Python 3.3, and will be removed in Python 3.16. Use the 'w' format
code (Py_UCS4) for Unicode characters instead. (Contributed by Hugo van Kemenade in
gh-80480.)

ctypes:

— Deprecate the undocumented SetPointerType() function, to be removed in Python 3.15.

(Contributed by Victor Stinner in gh-105733.)

— Soft-deprecate the ARRAY () function in favour of type * length multiplication. (Contributed
by Victor Stinner in gh-105733.)

decimal:

— Deprecate the non-standard and undocumented Decimal format specifier 'N', which is only
supported in the decimal module’s C implementation. (Contributed by Serhiy Storchaka in
gh-89902.)

e dis:

— Deprecate the HAVE_ARGUMENT separator. Check membership in hasarg instead. (Contributed
by Irit Katriel in gh-109319.)

30

https://github.com/python/cpython/issues/105382
https://github.com/python/cpython/issues/104804
https://github.com/python/cpython/issues/105546
https://github.com/python/cpython/issues/81137
https://github.com/python/cpython/issues/80480
https://github.com/python/cpython/issues/105733
https://github.com/python/cpython/issues/105733
https://github.com/python/cpython/issues/89902
https://github.com/python/cpython/issues/109319

o gettext:

— Deprecate non-integer numbers as arguments to functions and methods that consider plural
forms in the gettext module, even if no translation was found. (Contributed by Serhiy
Storchaka in gh-88434.)

e glob:

— Deprecate the undocumented glob0O() and globl() functions. Use glob() and pass a
path-like object specifying the root directory to the root_dir parameter instead. (Contributed
by Barney Gale in gh-117337.)

e http.server:

— Deprecate CGIHTTPRequestHandler, to be removed in Python 3.15. Process-based CGI HTTP
servers have been out of favor for a very long time. This code was outdated, unmaintained,
and rarely used. It has a high potential for both security and functionality bugs. (Contributed
by Gregory P. Smith in gh-109096.)

— Deprecate the --cgi flag to the python -m http.server command-line interface, to be re-
moved in Python 3.15. (Contributed by Gregory P. Smith in gh-109096.)

e mimetypes:

— Soft-deprecate file path arguments to guess_type (), use guess_file_type() instead. (Con-
tributed by Serhiy Storchaka in gh-66543.)

e Tre:

— Deprecate passing the optional mazsplit, count, or flags arguments as positional arguments
to the module-level split(), sub(), and subn() functions. These parameters will become

keyword-only in a future version of Python. (Contributed by Serhiy Storchaka in gh-56166.)
e pathlib:

— Deprecate PurePath.is_reserved(), to be removed in Python 3.15. Use os.path.
isreserved() to detect reserved paths on Windows. (Contributed by Barney Gale in
¢h-88569.)

e platform:

— Deprecate java_ver (), to be removed in Python 3.15. This function is only useful for Jython
support, has a confusing API, and is largely untested. (Contributed by Nikita Sobolev in
gh-116349.)

e pydoc:

— Deprecate the undocumented ispackage() function. (Contributed by Zackery Spytz in
gh-64020.)

e sqlited:

31

https://github.com/python/cpython/issues/88434
https://github.com/python/cpython/issues/117337
https://github.com/python/cpython/issues/109096
https://github.com/python/cpython/issues/109096
https://github.com/python/cpython/issues/66543
https://github.com/python/cpython/issues/56166
https://github.com/python/cpython/issues/88569
https://github.com/python/cpython/issues/116349
https://github.com/python/cpython/issues/64020

— Deprecate passing more than one positional argument to the connect() function and the
Connection constructor. The remaining parameters will become keyword-only in Python
3.15. (Contributed by Erlend E. Aasland in gh-107948.)

— Deprecate passing name, number of arguments, and the callable as keyword arguments for
Connection.create_function() and Connection.create_aggregate() These parameters

will become positional-only in Python 3.15. (Contributed by Erlend E. Aasland in gh-108278.)

— Deprecate passing the callback callable by keyword for the set_authorizer(),
set_progress_handler(), and set_trace_callback() Connection methods. The callback
callables will become positional-only in Python 3.15. (Contributed by Erlend E. Aasland in
¢h-108278.)

sys:

— Deprecate the _enablelegacywindowsfsencoding() function, to be removed in Python 3.16.
Use the PYTHONLEGACYWINDOWSFSENCODING environment variable instead. (Contributed by
Inada Naoki in gh-73427.)

tarfile:

— Deprecate the undocumented and unused TarFile.tarfile attribute, to be removed in
Python 3.16. (Contributed in gh-115256.)

traceback:

— Deprecate the TracebackException.exc_type attribute. Use TracebackException.

exc_type_str instead. (Contributed by Irit Katriel in gh-112332.)
typing:

— Deprecate the undocumented keyword argument syntax for creating NamedTuple classes (e.g.
Point = NamedTuple("Point", x=int, y=int)), to be removed in Python 3.15. Use the
class-based syntax or the functional syntax instead. (Contributed by Alex Waygood in
gh-105566.)

— Deprecate omitting the fields parameter when creating a NamedTuple or typing.TypedDict
class, and deprecate passing None to the fields parameter of both types. Python 3.15 will re-
quire a valid sequence for the fields parameter. To create a NamedTuple class with zero fields,
use class NT(NamedTuple): pass or NT = NamedTuple("NT", ()). To create a Typed-
Dict class with zero fields, use class TD(TypedDict): pass or TD = TypedDict("TD", {}).
(Contributed by Alex Waygood in gh-105566 and gh-105570.)

— Deprecate the typing.no_type_check_decorator() decorator function, to be removed in in
Python 3.15. After eight years in the typing module, it has yet to be supported by any major
type checker. (Contributed by Alex Waygood in gh-106309.)

— Deprecate typing.AnyStr. In Python 3.16, it will be removed from typing.__all__, and a

DeprecationWarning will be emitted at runtime when it is imported or accessed. It will be

32

https://github.com/python/cpython/issues/107948
https://github.com/python/cpython/issues/108278
https://github.com/python/cpython/issues/108278
https://github.com/python/cpython/issues/73427
https://github.com/python/cpython/issues/115256
https://github.com/python/cpython/issues/112332
https://github.com/python/cpython/issues/105566
https://github.com/python/cpython/issues/105566
https://github.com/python/cpython/issues/105570
https://github.com/python/cpython/issues/106309

removed entirely in Python 3.18. Use the new type parameter syntax instead. (Contributed
by Michael The in gh-107116.)

® Wwave:

— Deprecate the getmark(), setmark(), and getmarkers() methods of the Wave_read and
Wave_write classes, to be removed in Python 3.15. (Contributed by Victor Stinner in
¢h-105096.)

8.1 Pending Removal in Python 3.14

o argparse: The type, choices, and metavar parameters of argparse.BooleanOptionalAction are
deprecated and will be removed in 3.14. (Contributed by Nikita Sobolev in gh-92248.)

e ast: The following features have been deprecated in documentation since Python 3.8, now cause
a DeprecationWarning to be emitted at runtime when they are accessed or used, and will be

removed in Python 3.14:
— ast.Num
— ast.Str
ast.Bytes
— ast.NameConstant
— ast.Ellipsis
Use ast.Constant instead. (Contributed by Serhiy Storchaka in gh-90953.)
e asyncio:

— The child watcher classes MultiLoopChildWatcher, FastChildWatcher,
AbstractChildWatcher and SafeChildWatcher are deprecated and will be removed in
Python 3.14. (Contributed by Kumar Aditya in gh-94597.)

— asyncio.set_child_watcher(), asyncio.get_child_watcher(), asyncio.
AbstractEventLoopPolicy.set_child_watcher () and asyncio.
AbstractEventLoopPolicy.get_child_watcher() are deprecated and will be removed
in Python 3.14. (Contributed by Kumar Aditya in gh-94597.)

— The get_event_loop() method of the default event loop policy now emits a
DeprecationWarning if there is no current event loop set and it decides to create one. (Con-
tributed by Serhiy Storchaka and Guido van Rossum in gh-100160.)

e collections.abc: Deprecated ByteString. Prefer Sequence or Buffer. For use in typing, prefer
a union, like bytes | bytearray, or collections.abc.Buffer. (Contributed by Shantanu Jain
in gh-91896.)

e email: Deprecated the isdst parameter in email.utils.localtime(). (Contributed by Alan
Williams in gh-72346.)

33

https://github.com/python/cpython/issues/107116
https://github.com/python/cpython/issues/105096
https://github.com/python/cpython/issues/92248
https://github.com/python/cpython/issues/90953
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/100160
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/72346

importlib.abc deprecated classes:
— importlib.abc.ResourceReader
— importlib.abc.Traversable
— importlib.abc.TraversableResources
Use importlib.resources.abc classes instead:
— importlib.resources.abc.Traversable
— importlib.resources.abc.TraversableResources
(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

itertools had undocumented, inefficient, historically buggy, and inconsistent support for copy,
deepcopy, and pickle operations. This will be removed in 3.14 for a significant reduction in code

volume and maintenance burden. (Contributed by Raymond Hettinger in gh-101588.)

multiprocessing: The default start method will change to a safer one on Linux, BSDs, and other
non-macOS POSIX platforms where 'fork' is currently the default (gh-84559). Adding a runtime
warning about this was deemed too disruptive as the majority of code is not expected to care. Use
the get_context() or set_start_method() APIs to explicitly specify when your code requires

'fork'. See multiprocessing-start-methods.
pathlib: is_relative_to() and relative_to(): passing additional arguments is deprecated.

pkgutil: find_loader() and get_loader() now raise DeprecationWarning; use importlib.

util.find_spec() instead. (Contributed by Nikita Sobolev in gh-97850.)
pty:

— master_open(): use pty.openpty().

— slave_open(): use pty.openpty().
sqlited:

— version and version_info.

— execute() and executemany () if named placeholders are used and parameters is a sequence

instead of a dict.

typing: ByteString, deprecated since Python 3.9, now causes a DeprecationWarning to be

emitted when it is used.

urllib: urllib.parse.Quoter is deprecated: it was not intended to be a public API. (Con-
tributed by Gregory P. Smith in gh-88168.)

34

https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/88168

8.2 Pending Removal in Python 3.15

e The import system:

— Setting __cached__ on a module while failing to set __spec__.cached is deprecated. In
Python 3.15, __
or standard library. (gh-97879)

cached__ will cease to be set or take into consideration by the import system

— Setting __package__ on a module while failing to set __spec__.parent is deprecated. In
Python 3.15, __package__ will cease to be set or take into consideration by the import system
or standard library. (gh-97879)

e ctypes:

— The undocumented ctypes.SetPointerType() function has been deprecated since Python
3.13.

e http.server:

— The obsolete and rarely used CGIHTTPRequestHandler has been deprecated since Python 3.13.
No direct replacement exists. Anything is better than CGI to interface a web server with a

request handler.

— The --cgi flag to the python -m http.server command-line interface has been deprecated

since Python 3.13.
e importlib:
— load_module() method: use exec_module() instead.
e locale:

— The getdefaultlocale() function has been deprecated since Python 3.11. Its removal was
originally planned for Python 3.13 (gh-90817), but has been postponed to Python 3.15. Use
getlocale(), setlocale(), and getencoding() instead. (Contributed by Hugo van Keme-
nade in gh-111187.)

e pathlib:

— PurePath.is_reserved() has been deprecated since Python 3.13. Use os.path.

isreserved() to detect reserved paths on Windows.
e platform:

— java_ver() has been deprecated since Python 3.13. This function is only useful for Jython

support, has a confusing API, and is largely untested.
e sysconfig:

— The check _home argument of sysconfig.is_python_build() has been deprecated since
Python 3.12.

e threading:

35

https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187

— RLock () will take no arguments in Python 3.15. Passing any arguments has been deprecated
since Python 3.14, as the Python version does not permit any arguments, but the C version

allows any number of positional or keyword arguments, ignoring every argument.
e types:

— types.CodeType: Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was
planned to be removed in 3.12; but it only got a proper DeprecationWarning in 3.12. May
be removed in 3.15. (Contributed by Nikita Sobolev in gh-101866.)

e typing:

— The undocumented keyword argument syntax for creating NamedTuple classes (e.g. Point
= NamedTuple("Point", x=int, y=int)) has been deprecated since Python 3.13. Use the

class-based syntax or the functional syntax instead.

— The typing.no_type_check_decorator() decorator function has been deprecated since
Python 3.13. After eight years in the typing module, it has yet to be supported by any

major type checker.
e wave:
— The getmark (), setmark(), and getmarkers() methods of the Wave_read and Wave_write
classes have been deprecated since Python 3.13.
8.3 Pending removal in Python 3.16
e The import system:

— Setting __loader__ on a module while failing to set __spec__.loader is deprecated. In
Python 3.16, __loader__ will cease to be set or taken into consideration by the import system

or the standard library.
o array:

— The 'u' format code (wchar_t) has been deprecated in documentation since Python 3.3 and
at runtime since Python 3.13. Use the 'w' format code (Py_UCS4) for Unicode characters

instead.
e asyncio:

— asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16, use
inspect.iscoroutinefunction() instead. (Contributed by Jiahao Li and Kumar Aditya in
gh-122875.)

e builtins:

— Bitwise inversion on boolean types, ~True or ~False has been deprecated since Python 3.12,
as it produces surprising and unintuitive results (-2 and -1). Use not x instead for the logical
negation of a Boolean. In the rare case that you need the bitwise inversion of the underlying

integer, convert to int explicitly (~int (x)).

36

https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://github.com/python/cpython/issues/122875

e shutil:

— The ExecError exception has been deprecated since Python 3.14. It has not been used by

any function in shutil since Python 3.4, and is now an alias of RuntimeError.
e symtable:
— The Class.get_methods method has been deprecated since Python 3.14.
e sys:

— The _enablelegacywindowsfsencoding() function has been deprecated since Python 3.13.

Use the PYTHONLEGACYWINDOWSFSENCODING environment variable instead.
e tarfile:
— The undocumented and unused TarFile.tarfile attribute has been deprecated since Python
3.13.
8.4 Pending Removal in Future Versions

The following APIs will be removed in the future, although there is currently no date scheduled for their

removal.
e argparse: Nesting argument groups and nesting mutually exclusive groups are deprecated.
o array’s 'u' format code (gh-57281)
e builtins:
— bool(NotImplemented).

— Generators: throw(type, exc, tb) and athrow(type, exc, tb) signature is deprecated:

use throw(exc) and athrow(exc) instead, the single argument signature.

— Currently Python accepts numeric literals immediately followed by keywords, for example 0in
X, lor x, 0if lelse 2. It allows confusing and ambiguous expressions like [0x1for x in y]
(which can be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning
is raised if the numeric literal is immediately followed by one of keywords and, else, for, if,

in, is and or. In a future release it will be changed to a syntax error. (gh-87999)

— Support for __index__() and __int__() method returning non-int type: these methods will

be required to return an instance of a strict subclass of int.

— Support for __float__() method returning a strict subclass of float: these methods will be

required to return an instance of float.

— Support for __complex__() method returning a strict subclass of complex: these methods

will be required to return an instance of complex.

— Delegation of int () to __trunc__() method.

37

https://github.com/python/cpython/issues/57281
https://github.com/python/cpython/issues/87999

— Passing a complex number as the real or imag argument in the complex() constructor is now
deprecated; it should only be passed as a single positional argument. (Contributed by Serhiy
Storchaka in gh-109218.)

calendar: calendar.January and calendar.February constants are deprecated and replaced by

calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)
codeobject.co_lnotab: use the codeobject.co_lines() method instead.
datetime:

— utcnow(): use datetime.datetime.now(tz=datetime.UTC).

— utcfromtimestamp(): use datetime.datetime.fromtimestamp(timestamp, tz=datetime.
UTC).

gettext: Plural value must be an integer.
importlib:

— cache_from_source() debug override parameter is deprecated: use the optimization param-

eter instead.
importlib.metadata:
— EntryPoints tuple interface.
— Implicit None on return values.
logging: the warn() method has been deprecated since Python 3.3, use warning() instead.

mailbox: Use of StringlO input and text mode is deprecated, use ByteslO and binary mode

instead.
os: Calling os.register_at_fork() in multi-threaded process.

pydoc.ErrorDuringImport: A tuple value for ezc info parameter is deprecated, use an exception

instance.

re: More strict rules are now applied for numerical group references and group names in regular
expressions. Only sequence of ASCII digits is now accepted as a numerical reference. The group
name in bytes patterns and replacement strings can now only contain ASCII letters and digits and

underscore. (Contributed by Serhiy Storchaka in gh-91760.)
sre_compile, sre_constants and sre_parse modules.

shutil: rmtree()’s onerror parameter is deprecated in Python 3.12; use the onexc parameter

instead.
ssl options and protocols:

— ssl.SSLContext without protocol argument is deprecated.

38

https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/91760

— ssl.SSLContext: set_npn_protocols() and selected_npn_protocol() are deprecated:
use ALPN instead.

— ss1.0P_NO_SSL* options

— ss1.0P_NO_TLS* options

— ss1.PROTOCOL_SSLv3

— ss1.PROTOCOL_TLS

— ss1.PROTOCOL_TLSv1

— ss1.PROTOCOL_TLSv1_1

— ss1.PROTOCOL_TLSv1_2

— ssl.TLSVersion.SSLv3

— ssl.TLSVersion.TLSv1

— ssl.TLSVersion.TLSv1_1
o threading methods:

— threading.Condition.notifyAl1(): use notify_all().

threading.Event.isSet(): use is_set ().

threading.Thread.isDaemon(), threading.Thread.setDaemon(): use threading.Thread.

daemon attribute.

— threading.Thread.getName (), threading.Thread.setName(): use threading.Thread.

name attribute.

threading.currentThread(): use threading.current_thread().

threading.activeCount (): use threading.active_count ().
o typing.Text (gh-92332).

o unittest.IsolatedAsyncioTestCase: it is deprecated to return a value that is not None from a

test case.

e urllib.parse deprecated functions: urlparse() instead

splitattr()

splithost ()
— splitnport ()

— splitpasswd()

splitport ()

39

https://github.com/python/cpython/issues/92332

— splitquery()
— splittag()

— splittype()
— splituser()

— splitvalue()

to_bytes()

e urllib.request: URLopener and FancyURLopener style of invoking requests is deprecated. Use

newer urlopen() functions and methods.
e wsgiref: SimpleHandler.stdout.write() should not do partial writes.

e xml.etree.ElementTree: Testing the truth value of an Element is deprecated. In a future release

it will always return True. Prefer explicit len(elem) or elem is not None tests instead.

e zipimport.zipimporter.load_module() is deprecated: use exec_module() instead.

9 CPython Bytecode Changes

e The oparg of YIELD_VALUE is now 1 if the yield is part of a yield-from or await, and 0 otherwise.
The oparg of RESUME was changed to add a bit indicating if the except-depth is 1, which is needed
to optimize closing of generators. (Contributed by Irit Katriel in gh-111354.)

10 C API Changes

10.1 New Features
e Add the PyMonitoring C API for generating PEP 669 monitoring events:

— PyMonitoringState
— PyMonitoring FirePyStartEvent ()
— PyMonitoring_FirePyResumeEvent ()
— PyMonitoring_FirePyReturnEvent ()
— PyMonitoring FirePyYieldEvent ()
— PyMonitoring_FireCallEvent ()
— PyMonitoring_FireLineEvent ()
— PyMonitoring_ FireJumpEvent ()
— PyMonitoring_FireBranchEvent ()

— PyMonitoring FireCReturnEvent ()

40

https://github.com/python/cpython/issues/111354
https://peps.python.org/pep-0669/

— PyMonitoring_FirePyThrowEvent ()
— PyMonitoring_FireRaiseEvent ()
— PyMonitoring_FireCRaiseEvent ()
— PyMonitoring FireReraiseEvent ()
— PyMonitoring_FireExceptionHandledEvent ()
— PyMonitoring_FirePyUnwindEvent ()
— PyMonitoring_ FireStopIterationEvent ()
— PyMonitoring_EnterScope()
— PyMonitoring_ExitScope()
(Contributed by Irit Katriel in gh-111997).

o Add PyMutex, a lightweight mutex that occupies a single byte, and the new PyMutex_Lock()
and PyMutex_Unlock() functions. PyMutex_Lock() will release the GIL (if currently held) if the
operation needs to block. (Contributed by Sam Gross in gh-108724.)

e Add the PyTime C API to provide access to system clocks:
— PyTime_t.
— PyTime_MIN and PyTime_MAX.
— PyTime_AsSecondsDouble ().
— PyTime_Monotonic().
— PyTime_MonotonicRaw().
— PyTime_PerfCounter().
— PyTime_PerfCounterRaw().
— PyTime_Time().
— PyTime_TimeRaw().
(Contributed by Victor Stinner and Petr Viktorin in gh-110850.)

e Add the PyDict_ContainsString() function with the same behavior as PyDict_Contains(),
but key is specified as a const char* UTF-8 encoded bytes string, rather than a PyObjectx.
(Contributed by Victor Stinner in gh-108314.)

o Add the PyDict_GetItemRef () and PyDict_GetItemStringRef () functions, which behave simi-
larly to PyDict_GetItemWithError (), but return a strong reference instead of a borrowed refer-

ence. Moreover, these functions return -1 on error, removing the need to check PyErr_Occurred().
(Contributed by Victor Stinner in gh-106004.)

41

https://github.com/python/cpython/issues/111997
https://github.com/python/cpython/issues/108724
https://github.com/python/cpython/issues/110850
https://github.com/python/cpython/issues/108314
https://github.com/python/cpython/issues/106004

Add the PyDict_SetDefaultRef () function, which behaves similarly to PyDict_SetDefault (),
but returns a strong reference instead of a borrowed reference. This function returns -1 on error,
0 on insertion, and 1 if the key was already present in the dictionary. (Contributed by Sam Gross
in gh-112066.)

Add the PyDict_Pop() and PyDict_PopString() functions to remove a key from a dictionary and
optionally return the removed value. This is similar to dict.pop(), though there is no default
value, and KeyError is not raised for missing keys. (Contributed by Stefan Behnel and Victor
Stinner in gh-111262.)

Add the PyMapping_GetOptionalltem() and PyMapping_GetOptionalIltemString() functions
as alternatives to PyObject_GetItem() and PyMapping_GetItemString() respectively. The new
functions do not raise KeyError if the requested key is missing from the mapping. These variants
are more convenient and faster if a missing key should not be treated as a failure. (Contributed
by Serhiy Storchaka in gh-106307.)

Add the PyObject_GetOptionalAttr() and PyObject_GetOptionalAttrString() functions as
alternatives to PyObject_GetAttr() and PyObject_GetAttrString() respectively. The new
functions do not raise AttributeError if the requested attribute is not found on the object.
These variants are more convenient and faster if the missing attribute should not be treated as a
failure. (Contributed by Serhiy Storchaka in gh-106521.)

Add the PyErr_FormatUnraisable () function as an extension to PyErr_WriteUnraisable() that

allows customizing the warning message. (Contributed by Serhiy Storchaka in gh-108082.)

Add new functions that return a strong reference instead of a borrowed reference for frame locals,
globals, and builtins, as part of PEP 667:

— PyEval_GetFrameBuiltins() replaces PyEval_GetBuiltins()

— PyEval_GetFrameGlobals() replaces PyEval_GetGlobals ()

— PyEval_GetFrameLocals() replaces PyEval_GetLocals()
(Contributed by Mark Shannon and Tian Gao in gh-74929.)

Add the Py_GetConstant () and Py_GetConstantBorrowed () functions to get strong or borrowed
references to constants. For example, Py_GetConstant (Py_CONSTANT_ZERO) returns a strong ref-

erence to the constant zero. (Contributed by Victor Stinner in gh-115754.)

Add the PyImport_AddModuleRef () function as a replacement for PyImport_AddModule () that
returns a strong reference instead of a borrowed reference. (Contributed by Victor Stinner in
gh-105922.)

Add the Py_IsFinalizing() function to check whether the main Python interpreter is shutting
down. (Contributed by Victor Stinner in gh-108014.)

Add the PyList_GetItemRef () function as a replacement for PyList_GetItem() that returns a

strong reference instead of a borrowed reference. (Contributed by Sam Gross in gh-114329.)

42

https://github.com/python/cpython/issues/112066
https://github.com/python/cpython/issues/111262
https://github.com/python/cpython/issues/106307
https://github.com/python/cpython/issues/106521
https://github.com/python/cpython/issues/108082
https://github.com/python/cpython/issues/74929
https://github.com/python/cpython/issues/115754
https://github.com/python/cpython/issues/105922
https://github.com/python/cpython/issues/108014
https://github.com/python/cpython/issues/114329

Add the PyList_Extend() and PyList_Clear() functions, mirroring the Python 1ist.extend()
and list.clear () methods. (Contributed by Victor Stinner in gh-111138.)

Add the PyLong_AsInt () function. It behaves similarly to PyLong_AsLong (), but stores the result
in a C int instead of a C long. (Contributed by Victor Stinner in gh-108014.)

Add the PyLong_AsNativeBytes(), PyLong_FromNativeBytes(), and
PyLong_FromUnsignedNativeBytes() functions to simplify converting between native inte-

ger types and Python int objects. (Contributed by Steve Dower in gh-111140.)

Add PyModule_Add() function, which 1is similar to PyModule_AddObjectRef() and
PyModule_AddObject (), but always steals a reference to the value. (Contributed by Ser-
hiy Storchaka in gh-86493.)

Add the PyObject_GenericHash() function that implements the default hashing function of a
Python object. (Contributed by Serhiy Storchaka in gh-113024.)

Add the Py_HashPointer () function to hash a raw pointer. (Contributed by Victor Stinner in
gh-111545.)

Add the PyObject_VisitManagedDict() and PyObject_ClearManagedDict() functions. which
must be called by the traverse and clear functions of a type using the Py_TPFLAGS_MANAGED_DICT
flag. The pythoncapi-compat project can be used to use these functions with Python 3.11 and
3.12. (Contributed by Victor Stinner in gh-107073.)

Add the PyRefTracer_SetTracer() and PyRefTracer_GetTracer() functions, which enable
tracking object creation and destruction in the same way that the tracemalloc module does.
(Contributed by Pablo Galindo in gh-93502.)

Add the PySys_AuditTuple() function as an alternative to PySys_Audit () that takes event ar-
guments as a Python tuple object. (Contributed by Victor Stinner in gh-85283.)

Add the PyThreadState_GetUnchecked() function as an alternative to PyThreadState_Get ()
that doesn’t kill the process with a fatal error if it is NULL. The caller is responsible for checking
if the result is NULL. (Contributed by Victor Stinner in gh-108867.)

Add the PyType_GetFullyQualifiedName () function to get the type’s fully qualified name. The
module name is prepended if type.__module__ is a string and is not equal to either 'builtins'

or '__main__"'. (Contributed by Victor Stinner in gh-111696.)

Add the PyType_GetModuleName () function to get the type’s module name. This is equivalent
to getting the type.__module__ attribute. (Contributed by Eric Snow and Victor Stinner in
gh-111696.)

Add the PyUnicode_EqualToUTF8AndSize() and PyUnicode_EqualToUTF8() functions to com-
pare a Unicode object with a const char* UTF-8 encoded string and 1 if they are equal or 0 oth-

erwise. These functions do not raise exceptions. (Contributed by Serhiy Storchaka in gh-110289.)

Add the PyWeakref_GetRef () function as an alternative to PyWeakref _GetObject () that returns

a strong reference or NULL if the referent is no longer live. (Contributed by Victor Stinner in

43

https://github.com/python/cpython/issues/111138
https://github.com/python/cpython/issues/108014
https://github.com/python/cpython/issues/111140
https://github.com/python/cpython/issues/86493
https://github.com/python/cpython/issues/113024
https://github.com/python/cpython/issues/111545
https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/107073
https://github.com/python/cpython/issues/93502
https://github.com/python/cpython/issues/85283
https://github.com/python/cpython/issues/108867
https://github.com/python/cpython/issues/111696
https://github.com/python/cpython/issues/111696
https://github.com/python/cpython/issues/110289

gh-105927.)
e Add fixed variants of functions which silently ignore errors:
— PyObject_HasAttrWithError () replaces PyObject_HasAttr().

— PyObject_HasAttrStringWithError () replaces PyObject_HasAttrString().

PyMapping_HasKeyWithError () replaces PyMapping_HasKey ().

PyMapping_HasKeyStringWithError () replaces PyMapping_HasKeyString().
The new functions return -1 for errors and the standard 1 for true and 0 for false.

(Contributed by Serhiy Storchaka in gh-108511.)

10.2 Changed C APIs

e The keywords parameter of PyArg_ParseTupleAndKeywords () and
PyArg_VaParseTupleAndKeywords() now has type char *const* in C and const char
xconst* in C++, instead of char**. In C++, this makes these functions compatible with
arguments of type const char *const*, const char**, or char *const* without an explicit
type cast. In C, the functions only support arguments of type char *const*. This can be

overridden with the PY_CXX_CONST macro. (Contributed by Serhiy Storchaka in gh-65210.)

o PyArg_ParseTupleAndKeywords() now supports non-ASCII keyword parameter names. (Con-
tributed by Serhiy Storchaka in gh-110815.)

e The PyCode_GetFirstFree() function is now unstable API and is now named

PyUnstable_Code_GetFirstFree(). (Contributed by Bogdan Romanyuk in gh-115781.)

e The PyDict_GetItem(), PyDict_GetItemString(), PyMapping_HasKey (),
PyMapping_HasKeyString(), PyObject_HasAttr(), PyObject_HasAttrString(), and
PySys_GetObject () functions, each of which clears all errors which occurred when calling
them now reports these errors using sys.unraisablehook(). You may replace them with
other functions as recommended in the documentation. (Contributed by Serhiy Storchaka in
gh-106672.)

e Add support for the T, %#T, %N and %#N formats to PyUnicode_FromFormat ():
— %T: Get the fully qualified name of an object type
— %#T: As above, but use a colon as the separator
— %N: Get the fully qualified name of a type
— %#N: As above, but use a colon as the separator
See PEP 737 for more information. (Contributed by Victor Stinner in gh-111696.)

e You no longer have to define the PY_SSIZE_T_CLEAN macro before including Python.h when using

formats in format codes. APIs accepting the format codes always use Py_ssize_t for # formats.

44

https://github.com/python/cpython/issues/105927
https://github.com/python/cpython/issues/108511
https://github.com/python/cpython/issues/65210
https://github.com/python/cpython/issues/110815
https://github.com/python/cpython/issues/115781
https://github.com/python/cpython/issues/106672
https://peps.python.org/pep-0737/
https://github.com/python/cpython/issues/111696

(Contributed by Inada Naoki in gh-104922.)

e If Python is built in debug mode or with assertions, PyTuple_SET_ITEM() and
PyList_SET_ITEM() now check the index argument with an assertion. (Contributed by Victor
Stinner in gh-106168.)

10.3 Limited C API Changes

o The following functions are now included in the Limited C API:

— PyMem_RawMalloc ()

PyMem_RawCalloc()

PyMem_RawRealloc()

PyMem_RawFree ()
— PySys_Audit ()

— PySys_AuditTuple()

PyType_GetModuleByDef ()
(Contributed by Victor Stinner in gh-85283, gh-85283, and gh-116936.)

o Python built with --with-trace-refs (tracing references) now supports the Limited API. (Con-
tributed by Victor Stinner in gh-108634.)

10.4 Removed C APIs

o Remove several functions, macros, variables, etc with names prefixed by _Py or _PY (which are
considered private). If your project is affected by one of these removals and you believe that
the removed API should remain available, please open a new issue to request a public C API
and add cc: @vstinner to the issue to notify Victor Stinner. (Contributed by Victor Stinner in
gh-106320.)

e Remove old buffer protocols deprecated in Python 3.0. Use bufferobjects instead.

— PyObject_CheckReadBuffer(): Use PyObject_CheckBuffer() to test whether the object
supports the buffer protocol. Note that PyObject_CheckBuffer() doesn’t guarantee that
PyObject_GetBuffer () will succeed. To test if the object is actually readable, see the next
example of PyObject_GetBuffer().

— PyObject_AsCharBuffer(), PyObject_AsReadBuffer(): Use PyObject_GetBuffer() and
PyBuffer_Release() instead:

Py_buffer view;
if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) < 0) {
return NULL;
(ROR—D12h <)

45

https://github.com/python/cpython/issues/104922
https://github.com/python/cpython/issues/106168
https://github.com/python/cpython/issues/85283
https://github.com/python/cpython/issues/85283
https://github.com/python/cpython/issues/116936
https://github.com/python/cpython/issues/108634
https://github.com/python/cpython/issues/106320

(RIDR=I D5 DR E)
}
// Use “wiew.buf and “view.len to read from the buffer.
// You may need to cast buf as ~(const char*)view.buf .

PyBuffer_Release(&view);

— PyObject_AsWriteBuffer(): Use PyObject_GetBuffer() and PyBuffer_Release() in-

stead:

Py_buffer view;

if (PyObject_GetBuffer(obj, &view, PyBUF_WRITABLE) < 0) {
return NULL;

}

// Use “wview.buf and “view.len to write to the buffer.

PyBuffer_Release(&view);

(Contributed by Inada Naoki in gh-85275.)
e Remove various functions deprecated in Python 3.9:

— PyEval_CallObject (), PyEval_CallObjectWithKeywords(): Use PyObject_CallNoArgs()
or PyObject_Call() instead.

A EE

In PyObject_Call(), positional arguments must be a tuple and must not be NULL, and
keyword arguments must be a dict or NULL, whereas the removed functions checked
argument types and accepted NULL positional and keyword arguments. To replace
PyEval_CallObjectWithKeywords(func, NULL, kwargs) with PyObject_Call(), pass

an empty tuple as positional arguments using PyTuple_New (0).

— PyEval_CallFunction(): Use PyObject_CallFunction() instead.

— PyEval_CallMethod(): Use PyObject_CallMethod() instead.

— PyCFunction_Call(): Use PyObject_Call() instead.
(Contributed by Victor Stinner in gh-105107.)

e Remove the following old functions to configure the Python initialization, deprecated in Python
3.11:

— PySys_AddWarnOptionUnicode(): Use PyConfig.warnoptions instead.
— PySys_AddWarnOption(): Use PyConfig.warnoptions instead.

— PySys_AddX0Option(): Use PyConfig.xoptions instead.

46

https://github.com/python/cpython/issues/85275
https://github.com/python/cpython/issues/105107

— PySys_HasWarnOptions(): Use PyConfig.xoptions instead.
— PySys_SetPath(): Set PyConfig.module_search_paths instead.
— Py_SetPath(): Set PyConfig.module_search_paths instead.

— Py_SetStandardStreamEncoding(): Set PyConfig.stdio_encoding instead, and set also
maybe PyConfig.legacy_windows_stdio (on Windows).

— _Py_SetProgramFullPath(): Set PyConfig.executable instead.

Use the new PyConfig API of the Python Initialization Configuration instead (PEP 587), added
to Python 3.8. (Contributed by Victor Stinner in gh-105145.)

Remove PyEval_AcquireLock() and PyEval_ReleaseLock() functions, deprecated in Python 3.2.
They didn’t update the current thread state. They can be replaced with:

— PyEval_SaveThread() and PyEval_RestoreThread();

— low-level PyEval_AcquireThread() and PyEval_RestoreThread();

— or PyGILState_Ensure() and PyGILState_Release().
(Contributed by Victor Stinner in gh-105182.)

Remove the PyEval_ThreadsInitialized() function, deprecated in Python 3.9. Since Python
3.7, Py_Initialize() always creates the GIL: calling PyEval_InitThreads() does nothing and
PyEval_ThreadsInitialized() always returns non-zero. (Contributed by Victor Stinner in
gh-105182.)

Remove the _PyInterpreterState_Get() alias to PyInterpreterState_Get () which was kept
for backward compatibility with Python 3.8. The pythoncapi-compat project can be used to
get PyInterpreterState_Get() on Python 3.8 and older. (Contributed by Victor Stinner in
gh-106320.)

Remove the private _PyObject_FastCall() function: use PyObject_Vectorcall() which is avail-
able since Python 3.8 (PEP 590). (Contributed by Victor Stinner in gh-106023.)

Remove the cpython/pytime.h header file, which only contained private functions. (Contributed
by Victor Stinner in gh-106316.)

Remove the undocumented PY_TIMEQOUT_MAX constant from the limited C API. (Contributed by
Victor Stinner in gh-110014.)

Remove the old trashcan macros Py_TRASHCAN_SAFE_BEGIN and Py_TRASHCAN_SAFE_END. Replace
both with the new macros Py_TRASHCAN_BEGIN and Py_TRASHCAN_END. (Contributed by Irit Katriel
in gh-105111.)

47

https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/105145
https://github.com/python/cpython/issues/105182
https://github.com/python/cpython/issues/105182
https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/106320
https://peps.python.org/pep-0590/
https://github.com/python/cpython/issues/106023
https://github.com/python/cpython/issues/106316
https://github.com/python/cpython/issues/110014
https://github.com/python/cpython/issues/105111

10.5 Deprecated C APIs
o Deprecate old Python initialization functions:
— PySys_ResetWarnOptions(): Clear sys.warnoptions and warnings.filters instead.

— Py_GetExecPrefix(): Get sys.exec_prefix instead.

Py_GetPath(): Get sys.path instead.

Py_GetPrefix(): Get sys.prefix instead.

— Py_GetProgramFullPath(): Get sys.executable instead.

— Py_GetProgramName (): Get sys.executable instead.

— Py_GetPythonHome (): Get PyConfig.home or the PYTHONHOME environment variable instead.
(Contributed by Victor Stinner in gh-105145.)

e Soft deprecate the PyEval_GetBuiltins(), PyEval_GetGlobals(), and PyEval_GetLocals()

functions, which return a borrowed reference. (Soft deprecated as part of PEP 667.)

o Deprecate the PyImport_ImportModuleNoBlock() function, which is just an alias to
PyImport_ImportModule() since Python 3.3. (Contributed by Victor Stinner in gh-105396.)

e Soft deprecate the PyModule_AddObject () function. It should be replaced with PyModule_Add ()
or PyModule_AddObjectRef (). (Contributed by Serhiy Storchaka in gh-86493.)

e Deprecate the old Py_UNICODE and PY_UNICODE_TYPE types and the Py_UNICODE_WIDE define. Use
the wchar_t type directly instead. Since Python 3.3, Py_UNICODE and PY_UNICODE_TYPE are just
aliases to wchar_t. (Contributed by Victor Stinner in gh-105156.)

e Deprecate the PyWeakref_GetObject() and PyWeakref GET_OBJECT() functions, which return
a borrowed reference. Replace them with the new PyWeakref_GetRef () function, which returns
a strong reference. The pythoncapi-compat project can be used to get PyWeakref _GetRef () on
Python 3.12 and older. (Contributed by Victor Stinner in gh-105927.)

Pending Removal in Python 3.14
o The ma_version_tag field in PyDictObject for extension modules (PEP 699; gh-101193).
o Creating immutable types with mutable bases (gh-95388).

e Functions to configure Python’s initialization, deprecated in Python 3.11:

PySys_SetArgvEx(): Set PyConfig.argv instead.
— PySys_SetArgv(): Set PyConfig.argv instead.

— Py_SetProgramName (): Set PyConfig.program_name instead.

Py_SetPythonHome (): Set PyConfig.home instead.
The Py_InitializeFromConfig() API should be used with PyConfig instead.

48

https://github.com/python/cpython/issues/105145
https://peps.python.org/pep-0667/
https://github.com/python/cpython/issues/105396
https://github.com/python/cpython/issues/86493
https://github.com/python/cpython/issues/105156
https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/105927
https://peps.python.org/pep-0699/
https://github.com/python/cpython/issues/101193
https://github.com/python/cpython/issues/95388

o Global configuration variables:
— Py_DebugFlag: Use PyConfig.parser_debug instead.
— Py_VerboseFlag: Use PyConfig.verbose instead.
— Py_QuietFlag: Use PyConfig.quiet instead.
— Py_InteractiveFlag: Use PyConfig.interactive instead.
— Py_InspectFlag: Use PyConfig.inspect instead.
— Py_OptimizeFlag: Use PyConfig.optimization_level instead.
— Py_NoSiteFlag: Use PyConfig.site_import instead.
— Py_BytesWarningFlag: Use PyConfig.bytes_warning instead.
— Py_FrozenFlag: Use PyConfig.pathconfig_warnings instead.
— Py_IgnoreEnvironmentFlag: Use PyConfig.use_environment instead.
— Py_DontWriteBytecodeFlag: Use PyConfig.write_bytecode instead.
— Py_NoUserSiteDirectory: Use PyConfig.user_site_directory instead.
— Py_UnbufferedStdioFlag: Use PyConfig.buffered_stdio instead.

— Py_HashRandomizationFlag: Use PyConfig.use_hash_seed and PyConfig.hash_seed in-

stead.
— Py_IsolatedFlag: Use PyConfig.isolated instead.

— Py_LegacyWindowsFSEncodingFlag: Use PyPreConfig.legacy_windows_fs_encoding in-

stead.
— Py_LegacyWindowsStdioFlag: Use PyConfig.legacy_windows_stdio instead.
— Py_FileSystemDefaultEncoding: Use PyConfig.filesystem_encoding instead.
— Py_HasFileSystemDefaultEncoding: Use PyConfig.filesystem_encoding instead.
— Py_FileSystemDefaultEncodeErrors: Use PyConfig.filesystem_errors instead.
— Py_UTF8Mode: Use PyPreConfig.utf8_mode instead. (see Py_PreInitialize())
The Py_InitializeFromConfig() API should be used with PyConfig instead.
Pending Removal in Python 3.15
e The bundled copy of 1ibmpdecimal.
o The PyImport_ImportModuleNoBlock(): Use PyImport_ImportModule() instead.
e PyWeakref_GetObject() and PyWeakref GET_OBJECT(): Use PyWeakref_GetRef () instead.
e Py_UNICODE type and the Py_UNICODE_WIDE macro: Use wchar_t instead.

49

e Python initialization functions:

PySys_ResetWarnOptions(): Clear sys.warnoptions and warnings.filters instead.
— Py_GetExecPrefix(): Get sys.base_exec_prefix and sys.exec_prefix instead.

— Py_GetPath(): Get sys.path instead.

Py_GetPrefix(): Get sys.base_prefix and sys.prefix instead.

Py_GetProgramFullPath(): Get sys.executable instead.

— Py_GetProgramName (): Get sys.executable instead.

— Py_GetPythonHome (): Get PyConfig.home or the PYTHONHOME environment variable instead.
Pending Removal in Future Versions

The following APIs are deprecated and will be removed, although there is currently no date scheduled

for their removal.
o Py_TPFLAGS_HAVE_FINALIZE: Unneeded since Python 3.8.
o PyErr_Fetch(): Use PyErr_GetRaisedException() instead.
e PyErr_NormalizeException(): Use PyErr_GetRaisedException() instead.
o PyErr_Restore(): Use PyErr_SetRaisedException() instead.
e PyModule_GetFilename(): Use PyModule_GetFilenameObject () instead.
e Py0S_AfterFork(): Use Py0OS_AfterFork_Child() instead.
o PySlice_GetIndicesEx(): Use PySlice_Unpack() and PySlice_AdjustIndices() instead.
o PyUnicode_AsDecodedObject (): Use PyCodec_Decode() instead.
e PyUnicode_AsDecodedUnicode(): Use PyCodec_Decode () instead.
e PyUnicode_AsEncodedObject(): Use PyCodec_Encode() instead.
e PyUnicode_AsEncodedUnicode(): Use PyCodec_Encode () instead.
e PyUnicode_READY(): Unneeded since Python 3.12
o PyErr _Display(): Use PyErr_DisplayException() instead.
e _PyErr_ChainExceptions(): Use _PyErr_ChainExceptions1() instead.
e PyBytesObject.ob_shash member: call PyObject_Hash() instead.
e PyDictObject.ma_version_tag member.
o Thread Local Storage (TLS) API:

— PyThread_create_key(): Use PyThread_tss_alloc() instead.

50

PyThread_delete_key(): Use PyThread_tss_free() instead.

PyThread_set_key_value(): Use PyThread_tss_set () instead.
— PyThread_get_key_value(): Use PyThread_tss_get () instead.

— PyThread_delete_key_value(): Use PyThread_tss_delete() instead.

PyThread_ReInitTLS(): Unneeded since Python 3.7.

11 Build Changes

e arm64-apple-ios and arm64-apple-ios-simulator are both now PEP 11 tier 3 platforms.

(PEP 730 written and implementation contributed by Russell Keith-Magee in gh-114099.)

e aarch64-linux-android and x86_64-linux-android are both now PEP 11 tier 3 platforms.

(PEP 738 written and implementation contributed by Malcolm Smith in gh-116622.)
o wasm32-wasi is now a PEP 11 tier 2 platform. (Contributed by Brett Cannon in gh-115192.)

o wasm32-emscripten is no longer a PEP 11 supported platform. (Contributed by Brett Cannon
in gh-115192.)

¢ Building CPython now requires a compiler with support for the C11 atomic library, GCC built-in

atomic functions, or MSVC interlocked intrinsics.

o Autoconf 2.71 and aclocal 1.16.5 are now required to regenerate the configure script. (Con-
tributed by Christian Heimes in gh-89886 and by Victor Stinner in gh-112090.)

o SQLite 3.15.2 or newer is required to build the sqlite3 extension module. (Contributed by Erlend
Aasland in gh-105875.)

¢ CPython now bundles the mimalloc library by default. It is licensed under the MIT license; see mi-
malloc license. The bundled mimalloc has custom changes, see gh-113141 for details. (Contributed
by Dino Viehland in gh-109914.)

o The configure option --with-system-libmpdec now defaults to yes. The bundled copy of
libmpdecimal will be removed in Python 3.15.

o Python built with configure --with-trace-refs (tracing references) is now ABI compatible
with the Python release build and debug build. (Contributed by Victor Stinner in gh-108634.)

e On POSIX systems, the pkg-config (.pc) filenames now include the ABI flags. For example, the
free-threaded build generates python-3.13t.pc and the debug build generates python-3.13d.pc.

e The errno, fcntl, grp, md5, pwd, resource, termios, winsound, _ctypes_test,
_multiprocessing.posixshmem, _scproxy, _stat, _statistics, _testconsole,
_testimportmultiple and _uuid C extensions are now built with the limited C APIL
(Contributed by Victor Stinner in gh-85283.)

51

https://peps.python.org/pep-0011/
https://github.com/python/cpython/issues/114099
https://peps.python.org/pep-0011/
https://github.com/python/cpython/issues/116622
https://peps.python.org/pep-0011/
https://github.com/python/cpython/issues/115192
https://peps.python.org/pep-0011/
https://github.com/python/cpython/issues/115192
https://github.com/python/cpython/issues/89886
https://github.com/python/cpython/issues/112090
https://github.com/python/cpython/issues/105875
https://github.com/microsoft/mimalloc/
https://github.com/python/cpython/issues/113141
https://github.com/python/cpython/issues/109914
https://github.com/python/cpython/issues/108634
https://github.com/python/cpython/issues/85283

12 Porting to Python 3.13

This section lists previously described changes and other bugfixes that may require changes to your code.

12.1 Changes in the Python API

e PEP 667 introduces several changes to the semantics of locals() and f_locals:

— Calling locals () in an optimized scope now produces an independent snapshot on each call,
and hence no longer implicitly updates previously returned references. Obtaining the legacy
CPython behavior now requires explicit calls to update the initially returned dictionary with
the results of subsequent calls to locals(). Code execution functions that implicitly target
locals() (such as exec and eval) must be passed an explicit namespace to access their results

in an optimized scope. (Changed as part of PEP 667.)

— Calling locals() from a comprehension at module or class scope (including via exec or eval)
once more behaves as if the comprehension were running as an independent nested function
(i.e. the local variables from the containing scope are not included). In Python 3.12, this had
changed to include the local variables from the containing scope when implementing PEP
709. (Changed as part of PEP 667.)

— Accessing FrameType.f_locals in an optimized scope now returns a write-through proxy
rather than a snapshot that gets updated at ill-specified times. If a snapshot is desired, it
must be created explicitly with dict or the proxy’s .copy() method. (Changed as part of
PEP 667.)

e functools.partial now emits a FutureWarning when used as a method. The behavior will
change in future Python versions. Wrap it in staticmethod() if you want to preserve the old
behavior. (Contributed by Serhiy Storchaka in gh-121027.)

e An 0SError is now raised by getpass.getuser () for any failure to retrieve a username, instead of
ImportError on non-Unix platforms or KeyError on Unix platforms where the password database

is empty.

o The value of the mode attribute of gzip.GzipFile is now a string ('rb' or 'wb') instead of
an integer (1 or 2). The value of the mode attribute of the readable file-like object returned
by zipfile.ZipFile.open() is now 'rb' instead of 'r'. (Contributed by Serhiy Storchaka in
gh-115961.)

e mailbox.Maildir now ignores files with a leading dot (.). (Contributed by Zackery Spytz in

gh-65559.)

e pathlib.Path.glob() and rglob() now return both files and directories if a pattern that ends
with ”#*” is given, rather than directories only. Add a trailing slash to keep the previous behavior

and only match directories.

e The threading module now expects the _thread module to have an _is_main_interpreter()
function. This function takes no arguments and returns True if the current interpreter is the main

interpreter.

52

https://peps.python.org/pep-0667/
https://peps.python.org/pep-0709/
https://peps.python.org/pep-0709/
https://peps.python.org/pep-0667/
https://peps.python.org/pep-0667/
https://github.com/python/cpython/issues/121027
https://github.com/python/cpython/issues/115961
https://github.com/python/cpython/issues/65559

Any library or application that provides a custom _thread module must provide

_is_main_interpreter(), just like the module’s other "private” attributes. (gh-112826.)

12.2 Changes in the C API

e Python.h no longer includes the <ieeefp.h> standard header. It was included for the finite ()
function which is now provided by the <math.h> header. It should now be included explicitly if
needed. Remove also the HAVE_IEEEFP_H macro. (Contributed by Victor Stinner in gh-108765.)

e Python.h no longer includes these standard header files: <time.h>, <sys/select.h> and <sys/
time.h>. If needed, they should now be included explicitly. For example, <time.h> provides the
clock() and gmtime() functions, <sys/select.h> provides the select() function, and <sys/
time.h> provides the futimes (), gettimeofday () and setitimer () functions. (Contributed by
Victor Stinner in gh-108765.)

e On Windows, Python.h no longer includes the <stddef.h> standard header file. If needed, it
should now be included explicitly. For example, it provides offsetof () function, and size_t and
ptrdiff_t types. Including <stddef .h> explicitly was already needed by all other platforms, the
HAVE_STDDEF_H macro is only defined on Windows. (Contributed by Victor Stinner in gh-108765.)

o If the Py LIMITED_API macro is defined, Py_BUILD_CORE, Py_BUILD_CORE_BUILTIN and
Py_BUILD_CORE_MODULE macros are now undefined by <Python.h>. (Contributed by Victor Stin-

ner in gh-85283.)

e The old trashcan macros Py_TRASHCAN_SAFE_BEGIN and Py_TRASHCAN_SAFE_END were removed.
They should be replaced by the new macros Py_TRASHCAN_BEGIN and Py_TRASHCAN_END.

A tp_dealloc function that has the old macros, such as:

static void
mytype_dealloc(mytype *p)
{
PyObject_GC_UnTrack(p);
Py_TRASHCAN_SAFE_BEGIN(p) ;

Py_TRASHCAN_SAFE_END

should migrate to the new macros as follows:

static void

mytype_dealloc(mytype *p)

{
PyObject_GC_UnTrack(p);
Py_TRASHCAN_BEGIN(p, mytype_dealloc)

(RDOR=T12Hi L)

53

https://github.com/python/cpython/issues/112826
https://github.com/python/cpython/issues/108765
https://github.com/python/cpython/issues/108765
https://github.com/python/cpython/issues/108765
https://github.com/python/cpython/issues/85283

(FiDR— 25 D %)

Py_TRASHCAN_END

Note that Py_TRASHCAN_BEGIN has a second argument which should be the deallocation function

it is in. The new macros were added in Python 3.8 and the old macros were deprecated in Python
3.11. (Contributed by Irit Katriel in gh-105111.)

e PEP 667 introduces several changes to frame-related functions:

The effects of mutating the dictionary returned from PyEval_GetLocals() in an optimized
scope have changed. New dict entries added this way will now only be visible to subse-
quent PyEval_GetLocals() calls in that frame, as PyFrame_GetLocals(), locals(), and
FrameType.f_locals no longer access the same underlying cached dictionary. Changes made
to entries for actual variable names and names added via the write-through proxy interfaces
will be overwritten on subsequent calls to PyEval_GetLocals() in that frame. The recom-
mended code update depends on how the function was being used, so refer to the deprecation

notice on the function for details.

Calling PyFrame_GetLocals () in an optimized scope now returns a write-through proxy rather
than a snapshot that gets updated at ill-specified times. If a snapshot is desired, it must be cre-
ated explicitly (e.g. with PyDict_Copy()), or by calling the new PyEval_GetFrameLocals ()
APIL

PyFrame_FastToLocals() and PyFrame_FastToLocalsWithError() no longer have any
effect. Calling these functions has been redundant since Python 3.11, when

PyFrame_GetLocals() was first introduced.

PyFrame_LocalsToFast() no longer has any effect. Calling this function is redundant now

that PyFrame_GetLocals () returns a write-through proxy for optimized scopes.

e Python 3.13 removed many private functions. Some of them can be replaced using these alterna-

tives:

_PyDict_Pop(): PyDict_Pop() or PyDict_PopString();
_PyDict_GetItemWithError(): PyDict_GetItemRef ();
_PyErr_WriteUnraisableMsg(): PyErr_FormatUnraisable();
_PyEval_SetTrace(): PyEval_SetTrace() or PyEval_SetTraceAllThreads();
_PyList_Extend(): PyList_Extend();

_PyLong_AsInt(): PyLong_AsInt();

_PyMem_RawStrdup(): strdup();

_PyMem_Strdup(): strdup();

_PyObject_ClearManagedDict (): PyObject_ClearManagedDict();

54

https://github.com/python/cpython/issues/105111

_PyObject_VisitManagedDict(): PyObject_VisitManagedDict();

_PyThreadState_UncheckedGet (): PyThreadState_GetUnchecked();
— _PyTime_AsSecondsDouble(): PyTime_AsSecondsDouble();

— _PyTime_GetMonotonicClock(): PyTime_Monotonic() or PyTime_MonotonicRaw();

_PyTime_GetPerfCounter(): PyTime_PerfCounter() or PyTime_PerfCounterRaw();

_PyTime_GetSystemClock(): PyTime_Time() or PyTime_TimeRaw();
— _PyTime_MAX: PyTime_MAX;
— _PyTime_MIN: PyTime_MIN;

— _PyTime_t: PyTime_t;

_Py_HashPointer(): Py_HashPointer();

_Py_IsFinalizing(): Py_IsFinalizing().

The pythoncapi-compat project can be used to get most of these new functions on Python 3.12

and older.

13 Regression Test Changes

e Python built with configure --with-pydebug now supports a -X presite=package.module
command-line option. If used, it specifies a module that should be imported early in the life-

cycle of the interpreter, before site.py is executed. (Contributed by Lukasz Langa in gh-110769.)

14 Notable changes in 3.13.1

14.1 sys

e The previously undocumented special function sys.getobjects (), which only exists in specialized

builds of Python, may now return objects from other interpreters than the one it’s called in.

55

https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/110769

56

%5

7ILIT 7Ry FLX% P PEP 730, 6, 11

RIREH Python Enhancement Proposals PEP 737, ’%/17
PYTHON_BASIC_REPL, 7 PEP 11, 11, 51 PEP 738, 6‘, 11
PYTHON_COLORS, 4, 7, 16 PEP 11#tier-2, 6 PEP 742, 6, 24
PYTHON_CPU_COUNT, 19 PEP 11#tier-3, 6 PEP 744, 4, 10
PYTHON_FROZEN_MODULES, 12 PEP 587, 47 PYTHON_BASIC_REPL, 7

PYTHON_COLORS, 4, 7, 16

PYTHON_GIL, 8 PEP 590, 47 7
PYTHON_HISTORY, 12 PEP 594, 4, 25 PYTHON_CPU_COUNT, 19
PYTHON_PERF_JIT_SUPPORT, 12 PEP 602. 6 PYTHON_FROZEN_MODULES, 12
PYTHONHOME, 48, 50 PEP 626’ 36 PYTHON_GIL, 8
PYTHONLEGACYWINDOWSFSENCODING, PEP 667, 4. 10. 48. 52 PYTHON_HISTORY, 12
32, 37 P PYTHON_PERF_JIT_SUPPORT, 12
e PEP 669, 5, 40
» s PYTHONHOME, 48, 50
C PEP 696, 5 PYTHONLEGACYWINDOWSFSENCODING,
PEP 699, 48 39. 37
= ¢ -)~
Common Vulnerabilities and PEP 702, 5, 24
Exposures PEP 703, 4, 9 R
CVE 2023-27043, 16 PEP 705, 5, 24
CVE 2023-52425, 24 PEP 709, 52 RFC

CVE 2024-4030, 19, 22 PEP 719, 4 RFC 5280, 21

	Summary -- Release Highlights
	New Features
	A better interactive interpreter
	Improved error messages
	Free-threaded CPython
	An experimental just-in-time (JIT) compiler
	Defined mutation semantics for locals()
	Support for mobile platforms

	Other Language Changes
	New Modules
	Improved Modules
	argparse
	array
	ast
	asyncio
	base64
	compileall
	concurrent.futures
	configparser
	copy
	ctypes
	dbm
	dis
	doctest
	email
	enum
	fractions
	glob
	importlib
	io
	ipaddress
	itertools
	marshal
	math
	mimetypes
	mmap
	multiprocessing
	os
	os.path
	pathlib
	pdb
	queue
	random
	re
	shutil
	site
	sqlite3
	ssl
	statistics
	subprocess
	sys
	tempfile
	time
	tkinter
	traceback
	types
	typing
	unicodedata
	venv
	warnings
	xml
	zipimport

	Optimizations
	Removed Modules And APIs
	PEP 594: Remove "dead batteries" from the standard library
	2to3
	builtins
	configparser
	importlib.metadata
	locale
	opcode
	optparse
	pathlib
	re
	tkinter.tix
	turtle
	typing
	unittest
	urllib
	webbrowser

	New Deprecations
	Pending Removal in Python 3.14
	Pending Removal in Python 3.15
	Pending removal in Python 3.16
	Pending Removal in Future Versions

	CPython Bytecode Changes
	C API Changes
	New Features
	Changed C APIs
	Limited C API Changes
	Removed C APIs
	Deprecated C APIs
	Pending Removal in Python 3.14
	Pending Removal in Python 3.15
	Pending Removal in Future Versions

	Build Changes
	Porting to Python 3.13
	Changes in the Python API
	Changes in the C API

	Regression Test Changes
	Notable changes in 3.13.1
	sys

	索引

