Python T Curses 7O 5324

J—2X 3.13.3

Guido van Rossum and the Python development team

4 A 23, 2025
B
1 curses D CTHRIZ? 2
1.1 Python @ curses module L 2
2 curses 7 7V —a VDEEEIRT 3
3 T4 RNy R 4
4 TEFRAFORT 6
4.1 B I T — e 7
5 dA—% AR 8
6 LD Z L DER 10
&
A .M. Kuchling, Eric S. Raymond
Dy—2x
2.04
B

CORF2XY T curses HIREY 2 — L TTF A ME—RFT 4 AT LA BHIHT 2 FFEICOWTE
WL FET,

1 curses > THIC?

curses 74 77 Vi&, VT100s % Linux 2>V —b, XEIXERT0I 74088 T 223 21— a Vi
RKEWVo 2T FRAIR=ZADEIK (X—3IF)L) D=DIT, WHRIKFLEWRZ Y — Ufifi, F—KR—-F
DM EZFREL 5, WARIZD — Y LOBEIR, HHEORZ B —/L, SHHOHEEL Vo B ERERITS /2
HOEAREIHa— FE2YR—PLET, MAROBBEICE > TRELERZHIHIa—FEFES 2B, L
W UIEHRORENH D £ 3,

PITAANET A AT VARYBEDFOSER-oTIE, [RATHOEDOLE?] LEMIZES 2 LNLERA,
FEDISCFRTIRAR IR OB N M T H D T, = v FARERDPGEELTVT, BEZELT I DT
X370, VWERLRMEDDH 2 HDER-TVWET, £ XS REHO—DIF, FIZIE X —nN—2FKlk
WHHAAAD Unix TFo 1EPIZH, OS DA YA =T, A—FIVEEREDY —LT, INHIEXT T 7 4
JVH R — bR FHAIREIC R 2 AICEEST 2 0B H D £ 3,

The curses library provides fairly basic functionality, providing the programmer with an abstraction of a
display containing multiple non-overlapping windows of text. The contents of a window can be changed
in various ways---adding text, erasing it, changing its appearance---and the curses library will figure out
what control codes need to be sent to the terminal to produce the right output. curses doesn’t provide
many user-interface concepts such as buttons, checkboxes, or dialogs; if you need such features, consider

a user interface library such as Urwid.

curses 74 77 Vidjt4 BSD UNIX FIHICEINE L7z 2D AT&T 5 5 Hi7z Unix System V N—2 3
VTE L DIERE L WIFSREDBIMZ N E L7z, BSD curses EVWERA YT F Y AN TESLT, X AT&T
AVER=—T 2= ADA =TV —RFETH 3 ncurses I8 > TEHEHZ 51 F L7, Linux % FreeBSD @
koA =72V =2 Unix ZFALTVWEIHEEF. BZLHL VAT 41 ncurses ZHFALTOET, FED
Fr AYDEA Unix & System V 02— FEFEICLTWE 0, 22 TRRZETOEBMFHATE 31
FTTT, LAL, HonN—T 32D curses ZFOWL D20 70754 22 Y Unix EETITIFIGEL TV
BWTL & D,

The Windows version of Python doesn’t include the curses module. A ported version called UniCurses

is available.

1.1 Python @ curses module

The Python module is a fairly simple wrapper over the C functions provided by curses; if you're already
familiar with curses programming in C, it’s really easy to transfer that knowledge to Python. The biggest
difference is that the Python interface makes things simpler by merging different C functions such as
addstr (), mvaddstr (), and mvwaddstr() into a single addstr() method. You'll see this covered in

more detail later.

Z® HOWTO & curses ¥ Python #ffio TT7F A M7 I L%2ELT2DDAMGETT, curses API IZ
NI BEERMEHRETT LI LEFERKLTOWERA; ZOHNDZZHIZIE Python 74 75V H 4 KD ncurses
fiir C BfE~=2 71D ncurses DR—IESML TV, 2IEWVWA, TOXEFEARWNLZE X F24t
LTKNBTL kD,

https://pypi.org/project/Urwid/
https://pypi.org/project/UniCurses/

2 curses 77— 3>n0RFERT

Before doing anything, curses must be initialized. This is done by calling the initscr () function, which
will determine the terminal type, send any required setup codes to the terminal, and create various
internal data structures. If successful, initscr () returns a window object representing the entire screen;

this is usually called stdscr after the name of the corresponding C variable.

import curses

stdscr = curses.initscr()

Usually curses applications turn off automatic echoing of keys to the screen, in order to be able to read

keys and only display them under certain circumstances. This requires calling the noecho() function.

curses.noecho ()

BE7Z 7V r—a 3%/, Enter F—2M3 202, FIHLTICRINDTI2HENSDET; &
UZ cbreak E— F & FEEN, BHEDODANIBANY 77 XNZE— ReHZEEL 3,

curses.cbreak()]

WiARIGEE ., H— Y LF—= Page Up ® Home & W o 72#EF R Y ORI F—%2 <L F N, PR T —
To—r VAL LTRLET, TN6DY =7 Y ARBEL TS T 2UEEITS5 7 SV r—>a vy ieEIF 5
X 512, curses 1ZZ 1% curses.KEY_LEFT O X 5 BRFHILRMEEZIR L TIT> TN FE T, curses ITZDEH
HEEBHIE, F—y FE-FREZEVCT2HEDRHD T,

stdscr.keypad(True)

curses 7 SV r—2a v EKTIEZ2DGEE X D BFEHETT, UFEZRCHIDELD D T

curses.nocbreak()
stdscr.keypad(False)

curses.echo()

curses ICHAMEOEVREZ D IR L E T, ZL T, endwin() BAKZMOH L, WAREZEEORIEE—F
WEIBLE S,

curses.endwin()

curses 7 7V =2 a v ETF Ny 753 20— RINZRERIE. 7V = a YANERE LETOIRERICIEIH
FTEZERSEFRT L ZRHRLDE 2DE 218522 TT, Python TIXZ OREIZa — RignNS
DBHoT, HIRTERVFNPIHEELL JICEIREEET, 24 7L EF-Ed Iz a—hEEA. f
2R, Tz lS oL LD £T,

Python Tld, ZNHOEMEIZETI T Ny 72 KD EFITT 57012, curses.wrapper) Bz 1 ¥ R—
LT, ZOXS VT

from curses import wrapper

def main(stdscr):
Clear screen

stdscr.clear()

This raises ZeroDivisionError when 72 == 10.
for i in range(0, 11):
v = i-10

stdscr.addstr(i, 0, '10 divided by is ' . format (v, 10/v))

stdscr.refresh()

stdscr.getkey ()

wrapper (main)

The wrapper () function takes a callable object and does the initializations described above, also ini-
tializing colors if color support is present. wrapper() then runs your provided callable. Once the
callable returns, wrapper () will restore the original state of the terminal. The callable is called inside
a try...except that catches exceptions, restores the state of the terminal, and then re-raises the excep-
tion. Therefore your terminal won’t be left in a funny state on exception and you’ll be able to read the

exception’s message and traceback.

3 42RO ENYER

Windows are the basic abstraction in curses. A window object represents a rectangular area of the screen,

and supports methods to display text, erase it, allow the user to input strings, and so forth.

The stdscr object returned by the initscr () function is a window object that covers the entire screen.
Many programs may need only this single window, but you might wish to divide the screen into smaller
windows, in order to redraw or clear them separately. The newwin() function creates a new window of

a given size, returning the new window object.

begin_x = 20; begin_y = 7
height = 5; width = 40

win = curses.newwin(height, width, begin_y, begin_x)

Note that the coordinate system used in curses is unusual. Coordinates are always passed in the order
y,z, and the top-left corner of a window is coordinate (0,0). This breaks the normal convention for
handling coordinates where the x coordinate comes first. This is an unfortunate difference from most
other computer applications, but it’s been part of curses since it was first written, and it’s too late to

change things now.

Your application can determine the size of the screen by using the curses.LINES and curses.COLS

variables to obtain the y and z sizes. Legal coordinates will then extend from (0,0) to (curses.LINES

- 1, curses.COLS - 1).

When you call a method to display or erase text, the effect doesn’t immediately show up on the display.

Instead you must call the refresh() method of window objects to update the screen.

This is because curses was originally written with slow 300-baud terminal connections in mind; with these
terminals, minimizing the time required to redraw the screen was very important. Instead curses accu-
mulates changes to the screen and displays them in the most efficient manner when you call refresh().
For example, if your program displays some text in a window and then clears the window, there’s no

need to send the original text because they’re never visible.

In practice, explicitly telling curses to redraw a window doesn’t really complicate programming with
curses much. Most programs go into a flurry of activity, and then pause waiting for a keypress or some
other action on the part of the user. All you have to do is to be sure that the screen has been redrawn
before pausing to wait for user input, by first calling stdscr.refresh() or the refresh() method of

some other relevant window.

A pad is a special case of a window; it can be larger than the actual display screen, and only a portion of
the pad displayed at a time. Creating a pad requires the pad’s height and width, while refreshing a pad

requires giving the coordinates of the on-screen area where a subsection of the pad will be displayed.

pad = curses.newpad(100, 100)
These loops fill the pad with letters; addch() ts
explained in the next section
for y in range(0, 99):
for x in range(0, 99):

pad.addch(y,x, ord('a') + (xxx+y*y) % 26)

Displays a section of the pad in the middle of the screen.

(0,0) : coordinate of upper-left corner of pad area to display.

#
#
(5,5) : coordinate of upper-left corner of window area to be filled
with pad content.

(20, 75) : coordinate of lower-right corner of window area to be

: filled with pad content.

pad.refresh(0,0, 5,5, 20,75)

The refresh() call displays a section of the pad in the rectangle extending from coordinate (5,5) to
coordinate (20,75) on the screen; the upper left corner of the displayed section is coordinate (0,0) on the

pad. Beyond that difference, pads are exactly like ordinary windows and support the same methods.

If you have multiple windows and pads on screen there is a more efficient way to update the screen and
prevent annoying screen flicker as each part of the screen gets updated. refresh() actually does two

things:

1) ZOZND Y 4+ ¥ R YD noutrefresh() XV v REMFHLT, B RIH 2, A7V —YOEEFLWL
K2R T —2MELERL LT,

2) doupdate () BIEZM LT, 77— &MECHMENTLEFT LWREBICER T2 X511, WX
U"—T/%E%ﬁbi?o

Instead you can call noutrefresh() on a number of windows to update the data structure, and then

call doupdate () to update the screen.

4 THFZXAFDRT

From a C programmer’s point of view, curses may sometimes look like a twisty maze of functions,
all subtly different. For example, addstr() displays a string at the current cursor location in the
stdscr window, while mvaddstr () moves to a given y,x coordinate first before displaying the string.
waddstr() is just like addstr(), but allows specifying a window to use instead of using stdscr by

default. mvwaddstr () allows specifying both a window and a coordinate.

FHEIZH, Python 1 Y Z =7 2 —RF N6 02z 2 TRERML TN E T, stdscr 3RO D D & [FERD
U4V RUFTIO 27 bTHD, addstr() DLI KXY v FIFEROSIBIEXEHFALTIANET, @FZ
nBlE 4 20RTY,

R Bk

str £721% ch T str FIEF ch ZHRAEMBICRRLE TS

str £721% ch, attr XFH| str FT2NIFE ch BB attr ZFH LU CHEMBEICRRLET

y, T, str £721% ch V4 Y RUNDNE y,z ITBEIL str £7213 ch ZRRLES

y, T, str £721& ch, attr U 4 Y RURNOME yx BB LUEYE attr ZRA LT str £7213 ch R~ L
EJcE

Lo TERRTEZTFAMNENA T P FTHIEDNTEXT, A=A FNEK TUE&—54 > REE 7
7—IxE, EDFELBRONEITHIAL $5,

The addstr () method takes a Python string or bytestring as the value to be displayed. The contents of
bytestrings are sent to the terminal as-is. Strings are encoded to bytes using the value of the window’s

encoding attribute; this defaults to the default system encoding as returned by locale.getencoding().

The addch() methods take a character, which can be either a string of length 1, a bytestring of length

1, or an integer.

Constants are provided for extension characters; these constants are integers greater than 255. For
example, ACS_PLMINUS is a +/- symbol, and ACS_ULCORNER is the upper left corner of a box (handy for

drawing borders). You can also use the appropriate Unicode character.

V4 Y P RBREOREOBRD A=Y NNEBEZRZTWE®D, yo BEZS o DENTLE>TH, XF
FIR IR DBRIEMEICHR R EINE T, move(y,x) XYy FTA—YNLERFIEL LB TEET, W
WRIHT 21—V NV E2RRT UKD DHD70. H— Y DREDAMEBICNS Z & ZREE L THEES KLY
EORXLEVERS LB LNERA; F VX ARCHABMEBETH—YVHRHET 2 LHizES > TLEVE T,

If your application doesn’t need a blinking cursor at all, you can call curs_set (False) to make it invis-

ible. For compatibility with older curses versions, there’s a leaveok(bool) function that’s a synonym

6

for curs_set (). When bool is true, the curses library will attempt to suppress the flashing cursor, and

you won’t need to worry about leaving it in odd locations.

4.1 BECHS—

Characters can be displayed in different ways. Status lines in a text-based application are commonly
shown in reverse video, or a text viewer may need to highlight certain words. curses supports this by

allowing you to specify an attribute for each cell on the screen.

BEREERET, zhzhobty PBRZENEZRDO LT, BROENEL Yy P2y PLTTF A POEK
REilAH D ZENTEETH, curses IZETOMATOEDBHAHRTRET H 2 2 PMRFEANCXHITEZ 2085 »
BRREL T ERA. ZRSEFHL TV BEARDENMEFL TV L0, RILELRDIFE, &b
WCHHIATRE R B R 2 RE S 2 5T, ZTITHIEL %9,

Bt SHER
A_BLINK T ¥R b & IR

A_BOLD EE R 72IE R - R 7 F R b
A _DIM {REEE T % 2 b

A_REVERSE KEET % 2k
A_STANDOUT AFIHTEZ2HREDOANAF4 FE—F
A_UNDERLINE REMFETF b

DED RETHRAT—XA74 Y 2HHEORKR EHICERT 21, a—F2Z5L%7:

stdscr.addstr(0, 0, "Current mode: Typing mode",
curses.A_REVERSE)

stdscr.refresh()

curses 74 77 V3 H T —HEEZTRM L TV AHATOI I —dFRK— P LTVE T, ZARHRKOFTHRD
— %72 % DIF Linux 22> Y —/L T, color xterm & FHUCH =9,

To use color, you must call the start_color() function soon after calling initscr(), to initialize
the default color set (the curses.wrapper() function does this automatically). Once that’s done, the
has_colors() function returns TRUE if the terminal in use can actually display color. (Note: curses
uses the American spelling ’color’, instead of the Canadian/British spelling ’colour’. If you're used to

the British spelling, you’ll have to resign yourself to misspelling it for the sake of these functions.)

The curses library maintains a finite number of color pairs, containing a foreground (or text) color and a
background color. You can get the attribute value corresponding to a color pair with the color_pair()
function; this can be bitwise-OR’ed with other attributes such as A_REVERSE, but again, such combina-

tions are not guaranteed to work on all terminals.

Ble LT, 7FAMIZAT—RT 1 2o TERRLET:

stdscr.addstr("Pretty text", curses.color_pair(1l))

stdscr.refresh()

As T said before, a color pair consists of a foreground and background color. The init_pair(n, f, b)
function changes the definition of color pair n, to foreground color f and background color b. Color pair

0 is hard-wired to white on black, and cannot be changed.

Colors are numbered, and start_color() initializes 8 basic colors when it activates color mode. They
are: O:black, 1:red, 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The curses module defines

named constants for each of these colors: curses.COLOR_BLACK, curses.COLOR_RED, and so forth.

RoTAHAELEI, #T7— 1 ZHERICRCEELTAEL LS. THLTHEHELES:

curses.init_pair(l, curses.COLOR_RED, curses.COLOR_WHITE)

BT —RT7EEHEHT L EI12E, BCERENTEEDTFRAINDPRHTE DS —R7EH LVEIICEBELE
T, HILWTFFZA M2 ZOBTHESI L TEET:

stdscr.addstr (0,0, "RED ALERT!", curses.color_pair(1))

Very fancy terminals can change the definitions of the actual colors to a given RGB value. This lets you
change color 1, which is usually red, to purple or blue or any other color you like. Unfortunately, the
Linux console doesn’t support this, so I’'m unable to try it out, and can’t provide any examples. You can
check if your terminal can do this by calling can_change_color (), which returns True if the capability
is there. If you're lucky enough to have such a talented terminal, consult your system’s man pages for

more information.

5 A—HY AN

The C curses library offers only very simple input mechanisms. Python’s curses module adds a basic

text-input widget. (Other libraries such as Urwid have more extensive collections of widgets.)
T4 RUDPBANERZZDD2DODXY v FHEHHET,

e getch() refreshes the screen and then waits for the user to hit a key, displaying the key if echo ()
has been called earlier. You can optionally specify a coordinate to which the cursor should be

moved before pausing.

o getkey() does the same thing but converts the integer to a string. Individual characters are
returned as 1-character strings, and special keys such as function keys return longer strings con-

taining a key name such as KEY_UP or ~G.

It’s possible to not wait for the user using the nodelay() window method. After nodelay(True),
getch() and getkey() for the window become non-blocking. To signal that no input is ready, getch ()
returns curses.ERR (a value of -1) and getkey() raises an exception. There’s also a halfdelay()
function, which can be used to (in effect) set a timer on each getch(); if no input becomes available

within a specified delay (measured in tenths of a second), curses raises an exception.

8

https://pypi.org/project/Urwid/

The getch() method returns an integer; if it’s between 0 and 255, it represents the ASCII code of
the key pressed. Values greater than 255 are special keys such as Page Up, Home, or the cursor keys.
You can compare the value returned to constants such as curses.KEY_PPAGE, curses.KEY_HOME, or

curses.KEY_LEFT. The main loop of your program may look something like this:

while True:

¢ = stdscr.getch()

if ¢ == ord('p'):
PrintDocument ()

elif ¢ == ord('q"):
break # Extt the while loop

elif ¢ == curses.KEY_HOME:
x=y=0

The curses.ascii module supplies ASCII class membership functions that take either integer or
1-character string arguments; these may be useful in writing more readable tests for such loops. It
also supplies conversion functions that take either integer or 1-character-string arguments and return
the same type. For example, curses.ascii.ctrl() returns the control character corresponding to its

argument.

There’s also a method to retrieve an entire string, getstr(). It isn’t used very often, because its
functionality is quite limited; the only editing keys available are the backspace key and the Enter key,

which terminates the string. It can optionally be limited to a fixed number of characters.

curses.echo() # Enable echoing of characters

Get a 15-character string, with the cursor on the top line

s = stdscr.getstr(0,0, 15)

The curses. textpad module supplies a text box that supports an Emacs-like set of keybindings. Various
methods of the Textbox class support editing with input validation and gathering the edit results either

with or without trailing spaces. Here’s an example:

import curses

from curses.textpad import Textbox, rectangle

def main(stdscr):

stdscr.addstr(0, O, "Enter IM message: (hit Ctrl-G to send)")

editwin = curses.newwin(5,30, 2,1)
rectangle(stdscr, 1,0, 1+5+1, 1+30+1)

stdscr.refresh()

box = Textbox(editwin)
(RDR=V1ZHiEL)

(RIDR=I D5 DR E)

Let the user edit until Ctrl-G is struck.
box.edit ()

Get resulting contents

message = box.gather()

EHRBIFMIOVTIETIA T I VD FF 2 X b curses.textpad ZSML TLZE W,

6 &DZDEH

2D HOWTO TIEWLK O DHEALGEE., A7V —VATZ LAY IR xterm 4 VARV ARSI Y7 A4
RYMERZZRE, KOV TEH->TWERA, LA L. Python D curses V2 —1DI74 77V R—
JIBVERPEDTRELTVET, RFINERZIRETT,

If you’re in doubt about the detailed behavior of the curses functions, consult the manual pages for
your curses implementation, whether it’s ncurses or a proprietary Unix vendor’s. The manual pages will
document any quirks, and provide complete lists of all the functions, attributes, and ACS_* characters

available to you.

Because the curses API is so large, some functions aren’t supported in the Python interface. Often this
isn’t because they’re difficult to implement, but because no one has needed them yet. Also, Python
doesn’t yet support the menu library associated with ncurses. Patches adding support for these would

be welcome; see the Python Developer’s Guide to learn more about submitting patches to Python.
o Writing Programs with NCURSES: a lengthy tutorial for C programmers.
e The ncurses man page
e The ncurses FAQ

e "Use curses... don’t swear”: curses ¥7zi% Urwid % {# - THiKZHlf#I 32 PyCon 2013 &L 7 4
T3,

e "Console Applications with Urwid”: video of a PyCon CA 2012 talk demonstrating some applica-

tions written using Urwid.

10

https://devguide.python.org/
https://invisible-island.net/ncurses/ncurses-intro.html
https://linux.die.net/man/3/ncurses
https://invisible-island.net/ncurses/ncurses.faq.html
https://www.youtube.com/watch?v=eN1eZtjLEnU
https://pyvideo.org/video/1568/console-applications-with-urwid

	curses ってなに?
	Python の curses module

	curses アプリケーションの起動と終了
	ウィンドウとパッド
	テキストの表示
	属性とカラー

	ユーザ入力
	より多くの情報

