Inicialização, finalização e threads

Veja Configuração de inicialização do Python para detalhes sobre como configurar o interpretador antes da inicialização.

Antes da inicialização do Python

Em uma aplicação que incorpora Python, a função Py_Initialize() deve ser chamada antes de usar qualquer outra função da API Python/C; com exceção de algumas funções e as variáveis globais de configuração.

As seguintes funções podem ser seguramente chamadas antes da inicialização do Python.

Nota

Apesar de sua aparente semelhança com algumas das funções listadas acima, as seguintes funções não devem ser chamadas antes que o interpretador tenha sido inicializado: Py_EncodeLocale(), Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(), Py_GetPythonHome(), Py_GetProgramName(), PyEval_InitThreads(), e Py_RunMain().

Variáveis de configuração global

Python tem variáveis para a configuração global a fim de controlar diferentes características e opções. Por padrão, estes sinalizadores são controlados por opções de linha de comando.

Quando um sinalizador é definido por uma opção, o valor do sinalizador é o número de vezes que a opção foi definida. Por exemplo,``-b`` define Py_BytesWarningFlag para 1 e -bb define Py_BytesWarningFlag para 2.

int Py_BytesWarningFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.bytes_warning deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Emite um aviso ao comparar bytes ou bytearray com str ou bytes com int. Emite um erro se for maior ou igual a 2.

Definida pela opção -b.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_DebugFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.parser_debug deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Ativa a saída de depuração do analisador sintático (somente para especialistas, dependendo das opções de compilação).

Definida pela a opção -d e a variável de ambiente PYTHONDEBUG.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_DontWriteBytecodeFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.write_bytecode deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Se definida como diferente de zero, o Python não tentará escrever arquivos .pyc na importação de módulos fonte.

Definida pela opção -B e pela variável de ambiente PYTHONDONTWRITEBYTECODE.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_FrozenFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.pathconfig_warnings deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Suprime mensagens de erro ao calcular o caminho de pesquisa do módulo em Py_GetPath().

Sinalizador privado usado pelos programas _freeze_module e frozenmain.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_HashRandomizationFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração de PyConfig.hash_seed e PyConfig.use_hash_seed deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Definida como 1 se a variável de ambiente PYTHONHASHSEED estiver definida como uma string não vazia.

Se o sinalizador for diferente de zero, lê a variável de ambiente PYTHONHASHSEED para inicializar a semente de hash secreta.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_IgnoreEnvironmentFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.use_environment deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Ignora todas as variáveis de ambiente PYTHON*, por exemplo PYTHONPATH e PYTHONHOME, que podem estar definidas.

Definida pelas opções -E e -I.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_InspectFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.inspect deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Quando um script é passado como primeiro argumento ou a opção -c é usada, entre no modo interativo após executar o script ou o comando, mesmo quando sys.stdin não parece ser um terminal.

Definida pela opção -i e pela variável de ambiente PYTHONINSPECT.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_InteractiveFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.interactive deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Definida pela opção -i.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_IsolatedFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.isolated deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Executa o Python no modo isolado. No modo isolado, sys.path não contém nem o diretório do script nem o diretório de pacotes de sites do usuário.

Definida pela opção -I.

Adicionado na versão 3.4.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_LegacyWindowsFSEncodingFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyPreConfig.legacy_windows_fs_encoding deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Se o sinalizador for diferente de zero, use a codificação mbcs com o tratador de erros replace, em vez da codificação UTF-8 com o tratador de erros surrogatepass, para a codificação do sistema de arquivos e tratador de erros e codificação do sistema de arquivos.

Definida como 1 se a variável de ambiente PYTHONLEGACYWINDOWSFSENCODING estiver definida como uma string não vazia.

Veja PEP 529 para mais detalhes.

Disponibilidade: Windows.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_LegacyWindowsStdioFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.legacy_windows_stdio deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Se o sinalizador for diferente de zero, usa io.FileIO em vez de io._WindowsConsoleIO para fluxos padrão sys.

Definida como 1 se a variável de ambiente PYTHONLEGACYWINDOWSSTDIO estiver definida como uma string não vazia.

Veja a PEP 528 para mais detalhes.

Disponibilidade: Windows.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_NoSiteFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.site_import deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Desabilita a importação do módulo site e as manipulações dependentes do site de sys.path que isso acarreta. Também desabilita essas manipulações se site for explicitamente importado mais tarde (chame site.main() se você quiser que eles sejam acionados).

Definida pela opção -S.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_NoUserSiteDirectory

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.user_site_directory deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Não adiciona o diretório site-packages de usuário a sys.path.

Definida pelas opções -s e -I, e pela variável de ambiente PYTHONNOUSERSITE.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_OptimizeFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.optimization_level deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Definida pela opção -O e pela variável de ambiente PYTHONOPTIMIZE.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_QuietFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.quiet deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Não exibe as mensagens de direito autoral e de versão nem mesmo no modo interativo.

Definida pela opção -q.

Adicionado na versão 3.2.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_UnbufferedStdioFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.buffered_stdio deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Força os fluxos stdout e stderr a não serem armazenados em buffer.

Definida pela opção -u e pela variável de ambiente PYTHONUNBUFFERED.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_VerboseFlag

Esta API é mantida para compatibilidade com versões anteriores: a configuração PyConfig.verbose deve ser usada em seu lugar, consulte Configuração de inicialização do Python.

Exibe uma mensagem cada vez que um módulo é inicializado, mostrando o local (nome do arquivo ou módulo embutido) de onde ele é carregado. Se maior ou igual a 2, exibe uma mensagem para cada arquivo que é verificado durante a busca por um módulo. Também fornece informações sobre a limpeza do módulo na saída.

Definida pela a opção -v e a variável de ambiente PYTHONVERBOSE.

Deprecated since version 3.12, will be removed in version 3.15.

Inicializando e encerrando o interpretador

void Py_Initialize()
Parte da ABI Estável.

Inicializa o interpretador Python. Em uma aplicação que incorpora o Python, isto deve ser chamado antes do uso de qualquer outra função do Python/C API; veja Antes da Inicialização do Python para algumas exceções.

Isso inicializa a tabela de módulos carregados (sys.modules) e cria os módulos fundamentais builtins, __main__ e sys. Também inicializa o caminho de pesquisa de módulos (sys.path). Isso não define sys.argv; use a API da Configuração de inicialização do Python para isso. Isso é um no-op quando chamado pela segunda vez (sem chamar Py_FinalizeEx() primeiro). Não há valor de retorno; é um erro fatal se a inicialização falhar.

Usa Py_InitializeFromConfig() para personalizar a Configuração de inicialização do Python.

Nota

No Windows, altera o modo do console de O_TEXT para O_BINARY, o que também afetará usos não Python do console usando o Runtime C.

void Py_InitializeEx(int initsigs)
Parte da ABI Estável.

Esta função funciona como Py_Initialize() se initsigs for 1. Se initsigs for 0, ela pula o registro de inicialização de manipuladores de sinal, o que pode ser útil quando o CPython é incorporado como parte de uma aplicação maior.

Usa Py_InitializeFromConfig() para personalizar a Configuração de inicialização do Python.

PyStatus Py_InitializeFromConfig(const PyConfig *config)

Inicializa o Python a partir da configuração config, conforme descrito em Initialization with PyConfig.

Consulte a seção Configuração de Inicialização do Python para obter detalhes sobre como pré-inicializar o interpretador, preencher a estrutura de configuração do tempo de execução e consultar a estrutura de status retornada.

int Py_IsInitialized()
Parte da ABI Estável.

Retorna true (diferente de zero) quando o interpretador Python foi inicializado, false (zero) se não. Após Py_FinalizeEx() ser chamado, isso retorna false até que Py_Initialize() seja chamado novamente.

int Py_IsFinalizing()
Parte da ABI Estável desde a versão 3.13.

Retorna verdadeiro (diferente de zero) se o interpretador Python principal estiver em desligamento. Retorna falso (zero) caso contrário.

Adicionado na versão 3.13.

int Py_FinalizeEx()
Parte da ABI Estável desde a versão 3.6.

Desfaz todas as inicializações feitas por Py_Initialize() e o uso subsequente de funções da API Python/C, e destrói todos os subinterpretadores (veja Py_NewInterpreter() abaixo) que foram criados e ainda não destruídos desde a última chamada a Py_Initialize(). Esta operação é ineficaz quando chamada pela segunda vez (sem chamar Py_Initialize() novamente primeiro).

Como isso é o inverso de Py_Initialize(), ele deve ser chamado na mesma thread com o mesmo interpretador ativo. Isso significa a thread principal e o interpretador principal. Isso nunca deve ser chamado enquanto Py_RunMain() estiver em execução.

Normalmente, o valor de retorno é 0. Se houver erros durante a finalização (limpeza de dados armazenados em buffer), -1 será retornado.

Observe que o Python fará o máximo possível para liberar toda a memória alocada pelo interpretador Python. Portanto, qualquer extensão C deve certificar-se de limpar corretamente todos os PyObjects alocados anteriormente antes de usá-los em chamadas subsequentes para Py_Initialize(). Caso contrário, isso pode introduzir vulnerabilidades e comportamento incorreto.

Esta função é fornecida por vários motivos. Uma aplicação de incorporação pode querer reiniciar o Python sem precisar reiniciar a própria aplicação. Uma aplicação que carregou o interpretador Python de uma biblioteca carregável dinamicamente (ou DLL) pode querer liberar toda a memória alocada pelo Python antes de descarregar a DLL. Durante uma busca por vazamentos de memória em uma aplicação, um desenvolvedor pode querer liberar toda a memória alocada pelo Python antes de sair da aplicação.

Bugs e advertências: A destruição de módulos e objetos em módulos é feita em ordem aleatória; isso pode fazer com que destrutores (métodos __del__()) falhem quando dependem de outros objetos (até mesmo funções) ou módulos. Módulos de extensão carregados dinamicamente pelo Python não são descarregados. Pequenas quantidades de memória alocadas pelo interpretador Python podem não ser liberadas (se você encontrar um vazamento, por favor, reporte-o). Memória presa em referências circulares entre objetos não é liberada. Strings internadas serão todas desalocadas independentemente de sua contagem de referências. Parte da memória alocada por módulos de extensão pode não ser liberada. Algumas extensões podem não funcionar corretamente se sua rotina de inicialização for chamada mais de uma vez; isso pode acontecer se uma aplicação chamar Py_Initialize() e Py_FinalizeEx() mais de uma vez. Py_FinalizeEx() não deve ser chamado recursivamente de dentro de si mesmo. Portanto, ele não deve ser chamado por nenhum código que possa ser executado como parte do processo de desligamento do interpretador, como manipuladores atexit, finalizadores de objetos ou qualquer código que possa ser executado durante a limpeza dos arquivos de stdout e stderr.

Levanta um evento de auditoria cpython._PySys_ClearAuditHooks sem argumentos.

Adicionado na versão 3.6.

void Py_Finalize()
Parte da ABI Estável.

Esta é uma versão compatível com retrocompatibilidade de Py_FinalizeEx() que desconsidera o valor de retorno.

int Py_BytesMain(int argc, char **argv)
Parte da ABI Estável desde a versão 3.8.

Semelhante a Py_Main(), mas argv é um vetor de strings de bytes, permitindo que o aplicativo de chamada delegue a etapa de decodificação de texto ao tempo de execução do CPython.

Adicionado na versão 3.8.

int Py_Main(int argc, wchar_t **argv)
Parte da ABI Estável.

O programa principal para o interpretador padrão, encapsulando um ciclo completo de inicialização/finalização, bem como comportamento adicional para implementar a leitura de configurações do ambiente e da linha de comando e, em seguida, executar __main__ de acordo com Linha de comando.

Isso é disponibilizado para programas que desejam oferecer suporte à interface de linha de comando completa do CPython, em vez de apenas incorporar um tempo de execução do Python em uma aplicação maior.

Os parâmetros argc e argv são semelhantes aos passados ​​para a função main() de um programa C, exceto que as entradas argv são primeiro convertidas para wchar_t usando Py_DecodeLocale(). Também é importante observar que as entradas da lista de argumentos podem ser modificadas para apontar para strings diferentes daquelas passadas (no entanto, o conteúdo das strings apontadas pela lista de argumentos não é modificado).

The return value is 2 if the argument list does not represent a valid Python command line, and otherwise the same as Py_RunMain().

Em termos das APIs de configuração de tempo de execução do CPython documentadas na seção de configuração de runtime (e sem levar em conta o tratamento de erros), Py_Main é aproximadamente equivalente a:

PyConfig config;
PyConfig_InitPythonConfig(&config);
PyConfig_SetArgv(&config, argc, argv);
Py_InitializeFromConfig(&config);
PyConfig_Clear(&config);

Py_RunMain();

Em uso normal, uma aplicação de incorporação chamará esta função em vez de chamar Py_Initialize(), Py_InitializeEx() ou Py_InitializeFromConfig() diretamente, e todas as configurações serão aplicadas conforme descrito em outra parte desta documentação. Se esta função for chamada após uma chamada anterior à API de inicialização do runtime, as configurações de ambiente e de linha de comando que serão atualizadas dependem da versão (pois dependem de quais configurações oferecem suporte corretamente à modificação após já terem sido definidas uma vez na primeira inicialização do runtime).

int Py_RunMain(void)

Executes the main module in a fully configured CPython runtime.

Executes the command (PyConfig.run_command), the script (PyConfig.run_filename) or the module (PyConfig.run_module) specified on the command line or in the configuration. If none of these values are set, runs the interactive Python prompt (REPL) using the __main__ module’s global namespace.

If PyConfig.inspect is not set (the default), the return value will be 0 if the interpreter exits normally (that is, without raising an exception), the exit status of an unhandled SystemExit, or 1 for any other unhandled exception.

If PyConfig.inspect is set (such as when the -i option is used), rather than returning when the interpreter exits, execution will instead resume in an interactive Python prompt (REPL) using the __main__ module’s global namespace. If the interpreter exited with an exception, it is immediately raised in the REPL session. The function return value is then determined by the way the REPL session terminates: 0, 1, or the status of a SystemExit, as specified above.

This function always finalizes the Python interpreter before it returns.

See Python Configuration for an example of a customized Python that always runs in isolated mode using Py_RunMain().

int PyUnstable_AtExit(PyInterpreterState *interp, void (*func)(void*), void *data)
Esta é uma API Instável. Isso pode se alterado sem aviso em lançamentos menores.

Register an atexit callback for the target interpreter interp. This is similar to Py_AtExit(), but takes an explicit interpreter and data pointer for the callback.

There must be an attached thread state for interp.

Adicionado na versão 3.13.

Process-wide parameters

void Py_SetProgramName(const wchar_t *name)
Parte da ABI Estável.

This API is kept for backward compatibility: setting PyConfig.program_name should be used instead, see Python Initialization Configuration.

Esta função deve ser chamada antes de Py_Initialize() ser chamada pela primeira vez, caso seja solicitada. Ela diz ao interpretador o valor do argumento argv[0] para a função main() do programa (convertido em caracteres amplos). Isto é utilizado por Py_GetPath() e algumas outras funções abaixo para encontrar as bibliotecas de tempo de execução relativas ao executável do interpretador. O valor padrão é 'python'. O argumento deve apontar para um caractere string amplo terminado em zero no armazenamento estático, cujo conteúdo não mudará durante a execução do programa. Nenhum código no interpretador Python mudará o conteúdo deste armazenamento.

Use Py_DecodeLocale() to decode a bytes string to get a wchar_t* string.

Deprecated since version 3.11, will be removed in version 3.15.

wchar_t *Py_GetProgramName()
Parte da ABI Estável.

Return the program name set with PyConfig.program_name, or the default. The returned string points into static storage; the caller should not modify its value.

This function should not be called before Py_Initialize(), otherwise it returns NULL.

Alterado na versão 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig_Get("executable") (sys.executable) instead.

wchar_t *Py_GetPrefix()
Parte da ABI Estável.

Return the prefix for installed platform-independent files. This is derived through a number of complicated rules from the program name set with PyConfig.program_name and some environment variables; for example, if the program name is '/usr/local/bin/python', the prefix is '/usr/local'. The returned string points into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-level Makefile and the --prefix argument to the configure script at build time. The value is available to Python code as sys.base_prefix. It is only useful on Unix. See also the next function.

This function should not be called before Py_Initialize(), otherwise it returns NULL.

Alterado na versão 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig_Get("base_prefix") (sys.base_prefix) instead. Use PyConfig_Get("prefix") (sys.prefix) if virtual environments need to be handled.

wchar_t *Py_GetExecPrefix()
Parte da ABI Estável.

Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules from the program name set with PyConfig.program_name and some environment variables; for example, if the program name is '/usr/local/bin/python', the exec-prefix is '/usr/local'. The returned string points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable in the top-level Makefile and the --exec-prefix argument to the configure script at build time. The value is available to Python code as sys.base_exec_prefix. It is only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different major revisions of the same operating system generally also form different platforms. Non-Unix operating systems are a different story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local between platforms while having /usr/local/plat be a different filesystem for each platform.

This function should not be called before Py_Initialize(), otherwise it returns NULL.

Alterado na versão 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig_Get("base_exec_prefix") (sys.base_exec_prefix) instead. Use PyConfig_Get("exec_prefix") (sys.exec_prefix) if virtual environments need to be handled.

wchar_t *Py_GetProgramFullPath()
Parte da ABI Estável.

Return the full program name of the Python executable; this is computed as a side-effect of deriving the default module search path from the program name (set by PyConfig.program_name). The returned string points into static storage; the caller should not modify its value. The value is available to Python code as sys.executable.

This function should not be called before Py_Initialize(), otherwise it returns NULL.

Alterado na versão 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig_Get("executable") (sys.executable) instead.

wchar_t *Py_GetPath()
Parte da ABI Estável.

Return the default module search path; this is computed from the program name (set by PyConfig.program_name) and some environment variables. The returned string consists of a series of directory names separated by a platform dependent delimiter character. The delimiter character is ':' on Unix and macOS, ';' on Windows. The returned string points into static storage; the caller should not modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is) modified later to change the search path for loading modules.

This function should not be called before Py_Initialize(), otherwise it returns NULL.

Alterado na versão 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig_Get("module_search_paths") (sys.path) instead.

const char *Py_GetVersion()
Parte da ABI Estável.

Retorna a verão deste interpretador Python. Esta é uma string que se parece com

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first characters are the major and minor version separated by a period. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as sys.version.

See also the Py_Version constant.

const char *Py_GetPlatform()
Parte da ABI Estável.

Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is 'sunos5'. On macOS, it is 'darwin'. On Windows, it is 'win'. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as sys.platform.

const char *Py_GetCopyright()
Parte da ABI Estável.

Retorna a string oficial de direitos autoriais para a versão atual do Python, por exemplo

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python code as sys.copyright.

const char *Py_GetCompiler()
Parte da ABI Estável.

Retorna uma indicação do compilador usado para construir a atual versão do Python, em colchetes, por exemplo:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable sys.version.

const char *Py_GetBuildInfo()
Parte da ABI Estável.

Retorna informação sobre o número de sequência e a data e hora da construção da instância atual do interpretador Python, por exemplo

"#67, Aug  1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable sys.version.

void PySys_SetArgvEx(int argc, wchar_t **argv, int updatepath)
Parte da ABI Estável.

This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.parse_argv and PyConfig.safe_path should be used instead, see Python Initialization Configuration.

Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main() function with the difference that the first entry should refer to the script file to be executed rather than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string. If this function fails to initialize sys.argv, a fatal condition is signalled using Py_FatalError().

Se updatepath é zero, isto é tudo o que a função faz. Se updatepath não é zero, a função também modifica sys.path de acordo com o seguinte algoritmo:

  • If the name of an existing script is passed in argv[0], the absolute path of the directory where the script is located is prepended to sys.path.

  • Otherwise (that is, if argc is 0 or argv[0] doesn’t point to an existing file name), an empty string is prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py_DecodeLocale() to decode a bytes string to get a wchar_t* string.

See also PyConfig.orig_argv and PyConfig.argv members of the Python Initialization Configuration.

Nota

It is recommended that applications embedding the Python interpreter for purposes other than executing a single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE 2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys.path element after having called PySys_SetArgv(), for example using:

PyRun_SimpleString("import sys; sys.path.pop(0)\n");

Adicionado na versão 3.1.3.

Deprecated since version 3.11, will be removed in version 3.15.

void PySys_SetArgv(int argc, wchar_t **argv)
Parte da ABI Estável.

This API is kept for backward compatibility: setting PyConfig.argv and PyConfig.parse_argv should be used instead, see Python Initialization Configuration.

This function works like PySys_SetArgvEx() with updatepath set to 1 unless the python interpreter was started with the -I.

Use Py_DecodeLocale() to decode a bytes string to get a wchar_t* string.

See also PyConfig.orig_argv and PyConfig.argv members of the Python Initialization Configuration.

Alterado na versão 3.4: The updatepath value depends on -I.

Deprecated since version 3.11, will be removed in version 3.15.

void Py_SetPythonHome(const wchar_t *home)
Parte da ABI Estável.

This API is kept for backward compatibility: setting PyConfig.home should be used instead, see Python Initialization Configuration.

Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change for the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale() to decode a bytes string to get a wchar_t* string.

Deprecated since version 3.11, will be removed in version 3.15.

wchar_t *Py_GetPythonHome()
Parte da ABI Estável.

Return the default “home”, that is, the value set by PyConfig.home, or the value of the PYTHONHOME environment variable if it is set.

This function should not be called before Py_Initialize(), otherwise it returns NULL.

Alterado na versão 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig_Get("home") or the PYTHONHOME environment variable instead.

Estado de thread e trava global do interpretador

A menos que seja uma construção com threads livres do CPython, o interpretador Python não é totalmente seguro para thread. Para oferecer suporte a programas Python multithread, existe uma trava global, chamada de trava global do interpretador ou GIL, que deve ser mantida pela thread atual antes que ela possa acessar objetos Python com segurança. Sem a trava, mesmo as operações mais simples podem causar problemas em um programa multithread: por exemplo, quando duas threads incrementam simultaneamente a contagem de referências do mesmo objeto, a contagem de referências pode acabar sendo incrementada apenas uma vez, em vez de duas.

Portanto, existe a regra de que somente a thread que adquiriu a GIL pode operar em objetos Python ou chamar funções da API C/Python. Para emular a simultaneidade de execução, o interpretador tenta alternar threads regularmente (consulte sys.setswitchinterval()). A trava também é liberada em operações de E/S potencialmente bloqueantes, como ler ou escrever um arquivo, para que outras threads Python possam ser executadas enquanto isso.

O interpretador Python mantém algumas informações contábeis específicas da thread dentro de uma estrutura de dados chamada PyThreadState, conhecida como estado de thread. Cada thread do SO possui um ponteiro local da thread para um PyThreadState; um estado de thread referenciado por este ponteiro é considerado anexado.

Uma thread só pode ter um estado de thread anexado por vez. Um estado de thread anexado é tipicamente análogo a manter a GIL, exceto em construções com threads livres. Em construções com a GIL habilitada, a anexagem de um estado de thread vai bloquear até que a GIL possa ser adquirida. No entanto, mesmo em construções com a GIL desabilitada, ainda é necessário ter um estado de thread anexado para chamar a maior parte da API C.

Em geral, sempre haverá um estado de thread anexado ao usar a API C do Python. Somente em alguns casos específicos (como em um bloco Py_BEGIN_ALLOW_THREADS) a thread não terá um estado de thread anexado. Em caso de dúvida, verifique se PyThreadState_GetUnchecked() retorna NULL.

Detaching the thread state from extension code

Most extension code manipulating the thread state has the following simple structure:

Save the thread state in a local variable.
... Do some blocking I/O operation ...
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS

A macro Py_BEGIN_ALLOW_THREADS abre um novo bloco e declara uma variável local oculta; a macro Py_END_ALLOW_THREADS fecha o bloco.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);

Here is how these functions work:

The attached thread state holds the GIL for the entire interpreter. When detaching the attached thread state, the GIL is released, allowing other threads to attach a thread state to their own thread, thus getting the GIL and can start executing. The pointer to the prior attached thread state is stored as a local variable. Upon reaching Py_END_ALLOW_THREADS, the thread state that was previously attached is passed to PyEval_RestoreThread(). This function will block until another releases its thread state, thus allowing the old thread state to get re-attached and the C API can be called again.

For free-threaded builds, the GIL is normally out of the question, but detaching the thread state is still required for blocking I/O and long operations. The difference is that threads don’t have to wait for the GIL to be released to attach their thread state, allowing true multi-core parallelism.

Nota

Calling system I/O functions is the most common use case for detaching the thread state, but it can also be useful before calling long-running computations which don’t need access to Python objects, such as compression or cryptographic functions operating over memory buffers. For example, the standard zlib and hashlib modules detach the thread state when compressing or hashing data.

Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is automatically associated to them and the code showed above is therefore correct. However, when threads are created from C (for example by a third-party library with its own thread management), they don’t hold the GIL, because they don’t have an attached thread state.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned third-party library), you must first register these threads with the interpreter by creating an attached thread state before you can start using the Python/C API. When you are done, you should detach the thread state, and finally free it.

The PyGILState_Ensure() and PyGILState_Release() functions do all of the above automatically. The typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by Py_Initialize()). Python supports the creation of additional interpreters (using Py_NewInterpreter()), but mixing multiple interpreters and the PyGILState_* API is unsupported. This is because PyGILState_Ensure() and similar functions default to attaching a thread state for the main interpreter, meaning that the thread can’t safely interact with the calling subinterpreter.

Supporting subinterpreters in non-Python threads

If you would like to support subinterpreters with non-Python created threads, you must use the PyThreadState_* API instead of the traditional PyGILState_* API.

In particular, you must store the interpreter state from the calling function and pass it to PyThreadState_New(), which will ensure that the thread state is targeting the correct interpreter:

/* The return value of PyInterpreterState_Get() from the
   function that created this thread. */
PyInterpreterState *interp = ThreadData->interp;
PyThreadState *tstate = PyThreadState_New(interp);
PyThreadState_Swap(tstate);

/* GIL of the subinterpreter is now held.
   Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Destroy the thread state. No Python API allowed beyond this point. */
PyThreadState_Clear(tstate);
PyThreadState_DeleteCurrent();

Cuidados com o uso de fork()

Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems with fork(), after a process forks only the thread that issued the fork will exist. This has a concrete impact both on how locks must be handled and on all stored state in CPython’s runtime.

The fact that only the “current” thread remains means any locks held by other threads will never be released. Python solves this for os.fork() by acquiring the locks it uses internally before the fork, and releasing them afterwards. In addition, it resets any Lock objects in the child. When extending or embedding Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such as pthread_atfork() would need to be used to accomplish the same thing. Additionally, when extending or embedding Python, calling fork() directly rather than through os.fork() (and returning to or calling into Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the fork. PyOS_AfterFork_Child() tries to reset the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly, which os.fork() does. This means finalizing all other PyThreadState objects belonging to the current interpreter and all other PyInterpreterState objects. Due to this and the special nature of the “main” interpreter, fork() should only be called in that interpreter’s “main” thread, where the CPython global runtime was originally initialized. The only exception is if exec() will be called immediately after.

Cautions regarding runtime finalization

In the late stage of interpreter shutdown, after attempting to wait for non-daemon threads to exit (though this can be interrupted by KeyboardInterrupt) and running the atexit functions, the runtime is marked as finalizing: Py_IsFinalizing() and sys.is_finalizing() return true. At this point, only the finalization thread that initiated finalization (typically the main thread) is allowed to acquire the GIL.

If any thread, other than the finalization thread, attempts to attach a thread state during finalization, either explicitly or implicitly, the thread enters a permanently blocked state where it remains until the program exits. In most cases this is harmless, but this can result in deadlock if a later stage of finalization attempts to acquire a lock owned by the blocked thread, or otherwise waits on the blocked thread.

Gross? Yes. This prevents random crashes and/or unexpectedly skipped C++ finalizations further up the call stack when such threads were forcibly exited here in CPython 3.13 and earlier. The CPython runtime thread state C APIs have never had any error reporting or handling expectations at thread state attachment time that would’ve allowed for graceful exit from this situation. Changing that would require new stable C APIs and rewriting the majority of C code in the CPython ecosystem to use those with error handling.

High-level API

Estes são os tipos e as funções mais comumente usados na escrita de um código de extensão em C, ou ao incorporar o interpretador Python:

type PyInterpreterState
Parte da API Limitada (como uma estrutura opaca).

This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same interpreter share their module administration and a few other internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter they belong.

type PyThreadState
Parte da API Limitada (como uma estrutura opaca).

This data structure represents the state of a single thread. The only public data member is:

PyInterpreterState *interp

This thread’s interpreter state.

void PyEval_InitThreads()
Parte da ABI Estável.

Função descontinuada que não faz nada.

In Python 3.6 and older, this function created the GIL if it didn’t exist.

Alterado na versão 3.9: The function now does nothing.

Alterado na versão 3.7: Esta função agora é chamada por Py_Initialize(), então não há mais necessidade de você chamá-la.

Alterado na versão 3.2: Esta função não pode mais ser chamada antes de Py_Initialize().

Descontinuado desde a versão 3.9.

PyThreadState *PyEval_SaveThread()
Parte da ABI Estável.

Detach the attached thread state and return it. The thread will have no thread state upon returning.

void PyEval_RestoreThread(PyThreadState *tstate)
Parte da ABI Estável.

Set the attached thread state to tstate. The passed thread state should not be attached, otherwise deadlock ensues. tstate will be attached upon returning.

Nota

Calling this function from a thread when the runtime is finalizing will hang the thread until the program exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for more details.

Alterado na versão 3.14: Hangs the current thread, rather than terminating it, if called while the interpreter is finalizing.

PyThreadState *PyThreadState_Get()
Parte da ABI Estável.

Return the attached thread state. If the thread has no attached thread state, (such as when inside of Py_BEGIN_ALLOW_THREADS block), then this issues a fatal error (so that the caller needn’t check for NULL).

See also PyThreadState_GetUnchecked().

PyThreadState *PyThreadState_GetUnchecked()

Similar to PyThreadState_Get(), but don’t kill the process with a fatal error if it is NULL. The caller is responsible to check if the result is NULL.

Adicionado na versão 3.13: In Python 3.5 to 3.12, the function was private and known as _PyThreadState_UncheckedGet().

PyThreadState *PyThreadState_Swap(PyThreadState *tstate)
Parte da ABI Estável.

Set the attached thread state to tstate, and return the thread state that was attached prior to calling.

This function is safe to call without an attached thread state; it will simply return NULL indicating that there was no prior thread state.

Nota

Similar to PyGILState_Ensure(), this function will hang the thread if the runtime is finalizing.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure()
Parte da ABI Estável.

Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or of the attached thread state. This may be called as many times as desired by a thread as long as each call is matched with a call to PyGILState_Release(). In general, other thread-related APIs may be used between PyGILState_Ensure() and PyGILState_Release() calls as long as the thread state is restored to its previous state before the Release(). For example, normal usage of the Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the attached thread state when PyGILState_Ensure() was called, and must be passed to PyGILState_Release() to ensure Python is left in the same state. Even though recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure() must save the handle for its call to PyGILState_Release().

When the function returns, there will be an attached thread state and the thread will be able to call arbitrary Python code. Failure is a fatal error.

Aviso

Calling this function when the runtime is finalizing is unsafe. Doing so will either hang the thread until the program ends, or fully crash the interpreter in rare cases. Refer to Cautions regarding runtime finalization for more details.

Alterado na versão 3.14: Hangs the current thread, rather than terminating it, if called while the interpreter is finalizing.

void PyGILState_Release(PyGILState_STATE)
Parte da ABI Estável.

Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the corresponding PyGILState_Ensure() call (but generally this state will be unknown to the caller, hence the use of the GILState API).

Every call to PyGILState_Ensure() must be matched by a call to PyGILState_Release() on the same thread.

PyThreadState *PyGILState_GetThisThreadState()
Parte da ABI Estável.

Get the attached thread state for this thread. May return NULL if no GILState API has been used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.

Nota

This function does not account for thread states created by something other than PyGILState_Ensure() (such as PyThreadState_New()). Prefer PyThreadState_Get() or PyThreadState_GetUnchecked() for most cases.

int PyGILState_Check()

Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread at any time. Only if it has had its thread state initialized via PyGILState_Ensure() will it return 1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave differently.

Nota

If the current Python process has ever created a subinterpreter, this function will always return 1. Prefer PyThreadState_GetUnchecked() for most cases.

Adicionado na versão 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source distribution.

Py_BEGIN_ALLOW_THREADS
Parte da ABI Estável.

Esta macro se expande para { PyThreadState *_save; _save = PyEval_SaveThread();. Observe que ele contém uma chave de abertura; ele deve ser combinado com a seguinte macro Py_END_ALLOW_THREADS. Veja acima para uma discussão mais aprofundada desta macro.

Py_END_ALLOW_THREADS
Parte da ABI Estável.

Esta macro se expande para PyEval_RestoreThread(_save); }. Observe que ele contém uma chave de fechamento; ele deve ser combinado com uma macro Py_BEGIN_ALLOW_THREADS anterior. Veja acima para uma discussão mais aprofundada desta macro.

Py_BLOCK_THREADS
Parte da ABI Estável.

Esta macro se expande para PyEval_RestoreThread(_save);: é equivalente a Py_END_ALLOW_THREADS sem a chave de fechamento.

Py_UNBLOCK_THREADS
Parte da ABI Estável.

Esta macro se expande para _save = PyEval_SaveThread();: é equivalente a Py_BEGIN_ALLOW_THREADS sem a chave de abertura e declaração de variável.

Low-level API

All of the following functions must be called after Py_Initialize().

Alterado na versão 3.7: Py_Initialize() now initializes the GIL and sets an attached thread state.

PyInterpreterState *PyInterpreterState_New()
Parte da ABI Estável.

Create a new interpreter state object. An attached thread state is not needed, but may optionally exist if it is necessary to serialize calls to this function.

Levanta um evento de auditoria cpython.PyInterpreterState_New sem argumentos.

void PyInterpreterState_Clear(PyInterpreterState *interp)
Parte da ABI Estável.

Reset all information in an interpreter state object. There must be an attached thread state for the the interpreter.

Levanta um evento de auditoria cpython.PyInterpreterState_Clear sem argumentos.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Parte da ABI Estável.

Destroy an interpreter state object. There should not be an attached thread state for the target interpreter. The interpreter state must have been reset with a previous call to PyInterpreterState_Clear().

PyThreadState *PyThreadState_New(PyInterpreterState *interp)
Parte da ABI Estável.

Create a new thread state object belonging to the given interpreter object. An attached thread state is not needed.

void PyThreadState_Clear(PyThreadState *tstate)
Parte da ABI Estável.

Reset all information in a thread state object. tstate must be attached

Alterado na versão 3.9: This function now calls the PyThreadState.on_delete callback. Previously, that happened in PyThreadState_Delete().

Alterado na versão 3.13: The PyThreadState.on_delete callback was removed.

void PyThreadState_Delete(PyThreadState *tstate)
Parte da ABI Estável.

Destroy a thread state object. tstate should not be attached to any thread. tstate must have been reset with a previous call to PyThreadState_Clear().

void PyThreadState_DeleteCurrent(void)

Detach the attached thread state (which must have been reset with a previous call to PyThreadState_Clear()) and then destroy it.

No thread state will be attached upon returning.

PyFrameObject *PyThreadState_GetFrame(PyThreadState *tstate)
Parte da ABI Estável desde a versão 3.10.

Get the current frame of the Python thread state tstate.

Return a strong reference. Return NULL if no frame is currently executing.

See also PyEval_GetFrame().

tstate must not be NULL, and must be attached.

Adicionado na versão 3.9.

uint64_t PyThreadState_GetID(PyThreadState *tstate)
Parte da ABI Estável desde a versão 3.10.

Get the unique thread state identifier of the Python thread state tstate.

tstate must not be NULL, and must be attached.

Adicionado na versão 3.9.

PyInterpreterState *PyThreadState_GetInterpreter(PyThreadState *tstate)
Parte da ABI Estável desde a versão 3.10.

Get the interpreter of the Python thread state tstate.

tstate must not be NULL, and must be attached.

Adicionado na versão 3.9.

void PyThreadState_EnterTracing(PyThreadState *tstate)

Suspend tracing and profiling in the Python thread state tstate.

Resume them using the PyThreadState_LeaveTracing() function.

Adicionado na versão 3.11.

void PyThreadState_LeaveTracing(PyThreadState *tstate)

Resume tracing and profiling in the Python thread state tstate suspended by the PyThreadState_EnterTracing() function.

See also PyEval_SetTrace() and PyEval_SetProfile() functions.

Adicionado na versão 3.11.

PyInterpreterState *PyInterpreterState_Get(void)
Parte da ABI Estável desde a versão 3.9.

Get the current interpreter.

Issue a fatal error if there no attached thread state. It cannot return NULL.

Adicionado na versão 3.9.

int64_t PyInterpreterState_GetID(PyInterpreterState *interp)
Parte da ABI Estável desde a versão 3.7.

Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.

The caller must have an attached thread state.

Adicionado na versão 3.7.

PyObject *PyInterpreterState_GetDict(PyInterpreterState *interp)
Parte da ABI Estável desde a versão 3.8.

Return a dictionary in which interpreter-specific data may be stored. If this function returns NULL then no exception has been raised and the caller should assume no interpreter-specific dict is available.

This is not a replacement for PyModule_GetState(), which extensions should use to store interpreter-specific state information.

Adicionado na versão 3.8.

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PyInterpreterFrame *frame, int throwflag)

Type of a frame evaluation function.

The throwflag parameter is used by the throw() method of generators: if non-zero, handle the current exception.

Alterado na versão 3.9: The function now takes a tstate parameter.

Alterado na versão 3.11: The frame parameter changed from PyFrameObject* to _PyInterpreterFrame*.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc(PyInterpreterState *interp)

Get the frame evaluation function.

See the PEP 523 “Adding a frame evaluation API to CPython”.

Adicionado na versão 3.9.

void _PyInterpreterState_SetEvalFrameFunc(PyInterpreterState *interp, _PyFrameEvalFunction eval_frame)

Set the frame evaluation function.

See the PEP 523 “Adding a frame evaluation API to CPython”.

Adicionado na versão 3.9.

PyObject *PyThreadState_GetDict()
Retorna valor: Referência emprestada. Parte da ABI Estável.

Return a dictionary in which extensions can store thread-specific state information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function when no thread state is attached. If this function returns NULL, no exception has been raised and the caller should assume no thread state is attached.

int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)
Parte da ABI Estável.

Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must write your own C extension to call this. Must be called with an attached thread state. Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions.

Alterado na versão 3.7: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread(PyThreadState *tstate)
Parte da ABI Estável.

Attach tstate to the current thread, which must not be NULL or already attached.

The calling thread must not already have an attached thread state.

Nota

Calling this function from a thread when the runtime is finalizing will hang the thread until the program exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for more details.

Alterado na versão 3.8: Updated to be consistent with PyEval_RestoreThread(), Py_END_ALLOW_THREADS(), and PyGILState_Ensure(), and terminate the current thread if called while the interpreter is finalizing.

Alterado na versão 3.14: Hangs the current thread, rather than terminating it, if called while the interpreter is finalizing.

PyEval_RestoreThread() is a higher-level function which is always available (even when threads have not been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)
Parte da ABI Estável.

Detach the attached thread state. The tstate argument, which must not be NULL, is only used to check that it represents the attached thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread() is a higher-level function which is always available (even when threads have not been initialized).

Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.

The “main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in a process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling. It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime finalization. The PyInterpreterState_Main() function returns a pointer to its state.

You can switch between sub-interpreters using the PyThreadState_Swap() function. You can create and destroy them using the following functions:

type PyInterpreterConfig

Structure containing most parameters to configure a sub-interpreter. Its values are used only in Py_NewInterpreterFromConfig() and never modified by the runtime.

Adicionado na versão 3.12.

Campos de estrutura:

int use_main_obmalloc

If this is 0 then the sub-interpreter will use its own “object” allocator state. Otherwise it will use (share) the main interpreter’s.

If this is 0 then check_multi_interp_extensions must be 1 (non-zero). If this is 1 then gil must not be PyInterpreterConfig_OWN_GIL.

int allow_fork

If this is 0 then the runtime will not support forking the process in any thread where the sub-interpreter is currently active. Otherwise fork is unrestricted.

Note that the subprocess module still works when fork is disallowed.

int allow_exec

If this is 0 then the runtime will not support replacing the current process via exec (e.g. os.execv()) in any thread where the sub-interpreter is currently active. Otherwise exec is unrestricted.

Note that the subprocess module still works when exec is disallowed.

int allow_threads

If this is 0 then the sub-interpreter’s threading module won’t create threads. Otherwise threads are allowed.

int allow_daemon_threads

If this is 0 then the sub-interpreter’s threading module won’t create daemon threads. Otherwise daemon threads are allowed (as long as allow_threads is non-zero).

int check_multi_interp_extensions

If this is 0 then all extension modules may be imported, including legacy (single-phase init) modules, in any thread where the sub-interpreter is currently active. Otherwise only multi-phase init extension modules (see PEP 489) may be imported. (Also see Py_mod_multiple_interpreters.)

This must be 1 (non-zero) if use_main_obmalloc is 0.

int gil

This determines the operation of the GIL for the sub-interpreter. It may be one of the following:

PyInterpreterConfig_DEFAULT_GIL

Use the default selection (PyInterpreterConfig_SHARED_GIL).

PyInterpreterConfig_SHARED_GIL

Use (share) the main interpreter’s GIL.

PyInterpreterConfig_OWN_GIL

Use the sub-interpreter’s own GIL.

If this is PyInterpreterConfig_OWN_GIL then PyInterpreterConfig.use_main_obmalloc must be 0.

PyStatus Py_NewInterpreterFromConfig(PyThreadState **tstate_p, const PyInterpreterConfig *config)

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code. In particular, the new interpreter has separate, independent versions of all imported modules, including the fundamental modules builtins, __main__ and sys. The table of loaded modules (sys.modules) and the module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer to the same underlying file descriptors).

The given config controls the options with which the interpreter is initialized.

Upon success, tstate_p will be set to the first thread state created in the new sub-interpreter. This thread state is attached. Note that no actual thread is created; see the discussion of thread states below. If creation of the new interpreter is unsuccessful, tstate_p is set to NULL; no exception is set since the exception state is stored in the attached thread state, which might not exist.

Like all other Python/C API functions, an attached thread state must be present before calling this function, but it might be detached upon returning. On success, the returned thread state will be attached. If the sub-interpreter is created with its own GIL then the attached thread state of the calling interpreter will be detached. When the function returns, the new interpreter’s thread state will be attached to the current thread and the previous interpreter’s attached thread state will remain detached.

Adicionado na versão 3.12.

Sub-interpreters are most effective when isolated from each other, with certain functionality restricted:

PyInterpreterConfig config = {
    .use_main_obmalloc = 0,
    .allow_fork = 0,
    .allow_exec = 0,
    .allow_threads = 1,
    .allow_daemon_threads = 0,
    .check_multi_interp_extensions = 1,
    .gil = PyInterpreterConfig_OWN_GIL,
};
PyThreadState *tstate = NULL;
PyStatus status = Py_NewInterpreterFromConfig(&tstate, &config);
if (PyStatus_Exception(status)) {
    Py_ExitStatusException(status);
}

Note that the config is used only briefly and does not get modified. During initialization the config’s values are converted into various PyInterpreterState values. A read-only copy of the config may be stored internally on the PyInterpreterState.

Extension modules are shared between (sub-)interpreters as follows:

  • For modules using multi-phase initialization, e.g. PyModule_FromDefAndSpec(), a separate module object is created and initialized for each interpreter. Only C-level static and global variables are shared between these module objects.

  • For modules using single-phase initialization, e.g. PyModule_Create(), the first time a particular extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the extension’s init function is not called. Objects in the module’s dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs and caveats below).

    Note that this is different from what happens when an extension is imported after the interpreter has been completely re-initialized by calling Py_FinalizeEx() and Py_Initialize(); in that case, the extension’s initmodule function is called again. As with multi-phase initialization, this means that only C-level static and global variables are shared between these modules.

PyThreadState *Py_NewInterpreter(void)
Parte da ABI Estável.

Create a new sub-interpreter. This is essentially just a wrapper around Py_NewInterpreterFromConfig() with a config that preserves the existing behavior. The result is an unisolated sub-interpreter that shares the main interpreter’s GIL, allows fork/exec, allows daemon threads, and allows single-phase init modules.

void Py_EndInterpreter(PyThreadState *tstate)
Parte da ABI Estável.

Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be attached. When the call returns, there will be no attached thread state. All thread states associated with this interpreter are destroyed.

Py_FinalizeEx() will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

A Per-Interpreter GIL

Using Py_NewInterpreterFromConfig() you can create a sub-interpreter that is completely isolated from other interpreters, including having its own GIL. The most important benefit of this isolation is that such an interpreter can execute Python code without being blocked by other interpreters or blocking any others. Thus a single Python process can truly take advantage of multiple CPU cores when running Python code. The isolation also encourages a different approach to concurrency than that of just using threads. (See PEP 554.)

Using an isolated interpreter requires vigilance in preserving that isolation. That especially means not sharing any objects or mutable state without guarantees about thread-safety. Even objects that are otherwise immutable (e.g. None, (1, 5)) can’t normally be shared because of the refcount. One simple but less-efficient approach around this is to use a global lock around all use of some state (or object). Alternately, effectively immutable objects (like integers or strings) can be made safe in spite of their refcounts by making them immortal. In fact, this has been done for the builtin singletons, small integers, and a number of other builtin objects.

Se você preservar o isolamento, terá acesso à computação multi-core adequada, sem as complicações que acompanham o uso de threads livres. A falha em preservar o isolamento traz a exposição a todas as consequências de threads livres, incluindo corridas e travamentos difíceis de depurar.

Aside from that, one of the main challenges of using multiple isolated interpreters is how to communicate between them safely (not break isolation) and efficiently. The runtime and stdlib do not provide any standard approach to this yet. A future stdlib module would help mitigate the effort of preserving isolation and expose effective tools for communicating (and sharing) data between interpreters.

Adicionado na versão 3.12.

Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect — for example, using low-level file operations like os.close() they can (accidentally or maliciously) affect each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume a bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure() and PyGILState_Release() calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling of Python code from non-Python created threads will probably be broken when using sub-interpreters.

Notificações assíncronas

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the form of a function pointer and a void pointer argument.

int Py_AddPendingCall(int (*func)(void*), void *arg)
Parte da ABI Estável.

Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued for being called in the main thread. On failure, -1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg. It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

func must return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform another asynchronous notification recursively, but it can still be interrupted to switch threads if the thread state is detached.

This function doesn’t need an attached thread state. However, to call this function in a subinterpreter, the caller must have an attached thread state. Otherwise, the function func can be scheduled to be called from the wrong interpreter.

Aviso

This is a low-level function, only useful for very special cases. There is no guarantee that func will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called before the system call returns. This function is generally not suitable for calling Python code from arbitrary C threads. Instead, use the PyGILState API.

Adicionado na versão 3.1.

Alterado na versão 3.9: If this function is called in a subinterpreter, the function func is now scheduled to be called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its own list of scheduled calls.

Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported to the Python-level trace functions in previous versions.

typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace(). The first parameter is the object passed to the registration function as obj, frame is the frame object to which the event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE, PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or PyTrace_OPCODE, and arg depends on the value of what:

Value of what

Meaning of arg

PyTrace_CALL

Always Py_None.

PyTrace_EXCEPTION

Exception information as returned by sys.exc_info().

PyTrace_LINE

Always Py_None.

PyTrace_RETURN

Value being returned to the caller, or NULL if caused by an exception.

PyTrace_C_CALL

Function object being called.

PyTrace_C_EXCEPTION

Function object being called.

PyTrace_C_RETURN

Function object being called.

PyTrace_OPCODE

Always Py_None.

int PyTrace_CALL

The value of the what parameter to a Py_tracefunc function when a new call to a function or method is being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION

The value of the what parameter to a Py_tracefunc function when an exception has been raised. The callback function is called with this value for what when after any bytecode is processed after which the exception becomes set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE

The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a line-number event is being reported. It may be disabled for a frame by setting f_trace_lines to 0 on that frame.

int PyTrace_RETURN

The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL

The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION

The value for the what parameter to Py_tracefunc functions when a C function has raised an exception.

int PyTrace_C_RETURN

The value for the what parameter to Py_tracefunc functions when a C function has returned.

int PyTrace_OPCODE

The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting f_trace_opcodes to 1 on the frame.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)

Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

See also the sys.setprofile() function.

The caller must have an attached thread state.

void PyEval_SetProfileAllThreads(Py_tracefunc func, PyObject *obj)

Like PyEval_SetProfile() but sets the profile function in all running threads belonging to the current interpreter instead of the setting it only on the current thread.

The caller must have an attached thread state.

As PyEval_SetProfile(), this function ignores any exceptions raised while setting the profile functions in all threads.

Adicionado na versão 3.12.

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)

Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing function does receive line-number events and per-opcode events, but does not receive any event related to C function objects being called. Any trace function registered using PyEval_SetTrace() will not receive PyTrace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

See also the sys.settrace() function.

The caller must have an attached thread state.

void PyEval_SetTraceAllThreads(Py_tracefunc func, PyObject *obj)

Like PyEval_SetTrace() but sets the tracing function in all running threads belonging to the current interpreter instead of the setting it only on the current thread.

The caller must have an attached thread state.

As PyEval_SetTrace(), this function ignores any exceptions raised while setting the trace functions in all threads.

Adicionado na versão 3.12.

Reference tracing

Adicionado na versão 3.13.

typedef int (*PyRefTracer)(PyObject*, int event, void *data)

The type of the trace function registered using PyRefTracer_SetTracer(). The first parameter is a Python object that has been just created (when event is set to PyRefTracer_CREATE) or about to be destroyed (when event is set to PyRefTracer_DESTROY). The data argument is the opaque pointer that was provided when PyRefTracer_SetTracer() was called.

Adicionado na versão 3.13.

int PyRefTracer_CREATE

The value for the event parameter to PyRefTracer functions when a Python object has been created.

int PyRefTracer_DESTROY

The value for the event parameter to PyRefTracer functions when a Python object has been destroyed.

int PyRefTracer_SetTracer(PyRefTracer tracer, void *data)

Register a reference tracer function. The function will be called when a new Python has been created or when an object is going to be destroyed. If data is provided it must be an opaque pointer that will be provided when the tracer function is called. Return 0 on success. Set an exception and return -1 on error.

Not that tracer functions must not create Python objects inside or otherwise the call will be re-entrant. The tracer also must not clear any existing exception or set an exception. A thread state will be active every time the tracer function is called.

There must be an attached thread state when calling this function.

Adicionado na versão 3.13.

PyRefTracer PyRefTracer_GetTracer(void **data)

Get the registered reference tracer function and the value of the opaque data pointer that was registered when PyRefTracer_SetTracer() was called. If no tracer was registered this function will return NULL and will set the data pointer to NULL.

There must be an attached thread state when calling this function.

Adicionado na versão 3.13.

Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState *PyInterpreterState_Head()

Return the interpreter state object at the head of the list of all such objects.

PyInterpreterState *PyInterpreterState_Main()

Return the main interpreter state object.

PyInterpreterState *PyInterpreterState_Next(PyInterpreterState *interp)

Return the next interpreter state object after interp from the list of all such objects.

PyThreadState *PyInterpreterState_ThreadHead(PyInterpreterState *interp)

Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter interp.

PyThreadState *PyThreadState_Next(PyThreadState *tstate)

Return the next thread state object after tstate from the list of all such objects belonging to the same PyInterpreterState object.

Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS implementation to support the Python-level thread local storage API (threading.local). The CPython C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per thread.

A thread state does not need to be attached when calling these functions; they suppl their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use thread-local storage.

Nota

None of these API functions handle memory management on behalf of the void* values. You need to allocate and deallocate them yourself. If the void* values happen to be PyObject*, these functions don’t do refcount operations on them either.

Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new type Py_tss_t instead of int to represent thread keys.

Adicionado na versão 3.7.

Ver também

“A New C-API for Thread-Local Storage in CPython” (PEP 539)

type Py_tss_t

This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS implementation, and it has an internal field representing the key’s initialization state. There are no public members in this structure.

Quando Py_LIMITED_API não é definido, a alocação estática deste tipo por Py_tss_NEEDS_INIT é permitida.

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with Py_LIMITED_API.

Alocação dinâmica

Dynamic allocation of the Py_tss_t, required in extension modules built with Py_LIMITED_API, where static allocation of this type is not possible due to its implementation being opaque at build time.

Py_tss_t *PyThread_tss_alloc()
Parte da ABI Estável desde a versão 3.7.

Retorna um valor que é o mesmo estado de um valor inicializado com Py_tss_NEEDS_INIT, ou NULL no caso de falha de alocação dinâmica.

void PyThread_tss_free(Py_tss_t *key)
Parte da ABI Estável desde a versão 3.7.

Free the given key allocated by PyThread_tss_alloc(), after first calling PyThread_tss_delete() to ensure any associated thread locals have been unassigned. This is a no-op if the key argument is NULL.

Nota

A freed key becomes a dangling pointer. You should reset the key to NULL.

Métodos

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread_tss_set() and PyThread_tss_get() are undefined if the given Py_tss_t has not been initialized by PyThread_tss_create().

int PyThread_tss_is_created(Py_tss_t *key)
Parte da ABI Estável desde a versão 3.7.

Return a non-zero value if the given Py_tss_t has been initialized by PyThread_tss_create().

int PyThread_tss_create(Py_tss_t *key)
Parte da ABI Estável desde a versão 3.7.

Retorna um valor zero na inicialização bem-sucedida de uma chave TSS. O comportamento é indefinido se o valor apontado pelo argumento key não for inicializado por Py_tss_NEEDS_INIT. Essa função pode ser chamada repetidamente na mesma tecla – chamá-la em uma tecla já inicializada não funciona e retorna imediatamente com sucesso.

void PyThread_tss_delete(Py_tss_t *key)
Parte da ABI Estável desde a versão 3.7.

Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized again by PyThread_tss_create(). This function can be called repeatedly on the same key – calling it on an already destroyed key is a no-op.

int PyThread_tss_set(Py_tss_t *key, void *value)
Parte da ABI Estável desde a versão 3.7.

Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get(Py_tss_t *key)
Parte da ABI Estável desde a versão 3.7.

Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is associated with the key in the current thread.

Thread Local Storage (TLS) API

Descontinuado desde a versão 3.7: This API is superseded by Thread Specific Storage (TSS) API.

Nota

This version of the API does not support platforms where the native TLS key is defined in a way that cannot be safely cast to int. On such platforms, PyThread_create_key() will return immediately with a failure status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key()
Parte da ABI Estável.
void PyThread_delete_key(int key)
Parte da ABI Estável.
int PyThread_set_key_value(int key, void *value)
Parte da ABI Estável.
void *PyThread_get_key_value(int key)
Parte da ABI Estável.
void PyThread_delete_key_value(int key)
Parte da ABI Estável.
void PyThread_ReInitTLS()
Parte da ABI Estável.

Synchronization Primitives

The C-API provides a basic mutual exclusion lock.

type PyMutex

A mutual exclusion lock. The PyMutex should be initialized to zero to represent the unlocked state. For example:

PyMutex mutex = {0};

Instances of PyMutex should not be copied or moved. Both the contents and address of a PyMutex are meaningful, and it must remain at a fixed, writable location in memory.

Nota

A PyMutex currently occupies one byte, but the size should be considered unstable. The size may change in future Python releases without a deprecation period.

Adicionado na versão 3.13.

void PyMutex_Lock(PyMutex *m)

Lock mutex m. If another thread has already locked it, the calling thread will block until the mutex is unlocked. While blocked, the thread will temporarily detach the thread state if one exists.

Adicionado na versão 3.13.

void PyMutex_Unlock(PyMutex *m)

Unlock mutex m. The mutex must be locked — otherwise, the function will issue a fatal error.

Adicionado na versão 3.13.

Python Critical Section API

The critical section API provides a deadlock avoidance layer on top of per-object locks for free-threaded CPython. They are intended to replace reliance on the global interpreter lock, and are no-ops in versions of Python with the global interpreter lock.

Critical sections avoid deadlocks by implicitly suspending active critical sections and releasing the locks during calls to PyEval_SaveThread(). When PyEval_RestoreThread() is called, the most recent critical section is resumed, and its locks reacquired. This means the critical section API provides weaker guarantees than traditional locks – they are useful because their behavior is similar to the GIL.

The functions and structs used by the macros are exposed for cases where C macros are not available. They should only be used as in the given macro expansions. Note that the sizes and contents of the structures may change in future Python versions.

Nota

Operations that need to lock two objects at once must use Py_BEGIN_CRITICAL_SECTION2. You cannot use nested critical sections to lock more than one object at once, because the inner critical section may suspend the outer critical sections. This API does not provide a way to lock more than two objects at once.

Exemplo de uso:

static PyObject *
set_field(MyObject *self, PyObject *value)
{
   Py_BEGIN_CRITICAL_SECTION(self);
   Py_SETREF(self->field, Py_XNewRef(value));
   Py_END_CRITICAL_SECTION();
   Py_RETURN_NONE;
}

In the above example, Py_SETREF calls Py_DECREF, which can call arbitrary code through an object’s deallocation function. The critical section API avoids potential deadlocks due to reentrancy and lock ordering by allowing the runtime to temporarily suspend the critical section if the code triggered by the finalizer blocks and calls PyEval_SaveThread().

Py_BEGIN_CRITICAL_SECTION(op)

Acquires the per-object lock for the object op and begins a critical section.

In the free-threaded build, this macro expands to:

{
    PyCriticalSection _py_cs;
    PyCriticalSection_Begin(&_py_cs, (PyObject*)(op))

In the default build, this macro expands to {.

Adicionado na versão 3.13.

Py_END_CRITICAL_SECTION()

Ends the critical section and releases the per-object lock.

In the free-threaded build, this macro expands to:

    PyCriticalSection_End(&_py_cs);
}

In the default build, this macro expands to }.

Adicionado na versão 3.13.

Py_BEGIN_CRITICAL_SECTION2(a, b)

Acquires the per-objects locks for the objects a and b and begins a critical section. The locks are acquired in a consistent order (lowest address first) to avoid lock ordering deadlocks.

In the free-threaded build, this macro expands to:

{
    PyCriticalSection2 _py_cs2;
    PyCriticalSection2_Begin(&_py_cs2, (PyObject*)(a), (PyObject*)(b))

In the default build, this macro expands to {.

Adicionado na versão 3.13.

Py_END_CRITICAL_SECTION2()

Ends the critical section and releases the per-object locks.

In the free-threaded build, this macro expands to:

    PyCriticalSection2_End(&_py_cs2);
}

In the default build, this macro expands to }.

Adicionado na versão 3.13.